CSE 451: Operating Systems
Spring 2011

Module 16
Berkeley Log-Structured File System

eeeeeeeeeeeeee

More on caching (applies both to FS and FFS)

Cache (often called buffer cache) is just part of
system memory

It's system-wide, shared by all processes

Need a replacement algorithm
— LRU usually

Even a small (4MB) cache can be very
effective

Today’s huge memories => bigger caches =>
even higher hit ratios

Many file systems “read-ahead” into the
cache, increasing effectiveness even further

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 2

Caching writes, vs. reads

« Some applications assume data is on disk after a
write (seems fair enough!)

 And the file system itself will have (potentially
costly!) consistency problems if a crash occurs
between syncs - i-nodes and file blocks can get
out of whack
— Approaches:

o “write-through” the buffer cache (synchronous - slow), or

« “write-behind”: maintain queue of uncommitted blocks,
periodically flush (unreliable - this is the sync solution), or

« NVRAM: write into battery-backed RAM (expensive) and
then later to disk

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

So, you can make things better, but ...

As caches get big, most reads will be satisfied
from the cache

No matter how you cache write operations,
though, they are eventually going to have to get
back to disk

Thus, most disk traffic will be write traffic

Goal: optimize write performance

Problem: If you eventually put blocks (i-nodes,
file content blocks) back where they came from
on the disk, then even if you schedule disk writes
cleverly, there’s still going to be a lot of head
movement

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

LFS inspiration

 Suppose, instead, what you wrote to disk was a
log of changes made to files

— log includes modified data blocks and modified
metadata blocks

— buffer a huge block (“segment”) in memory - 512K or

1M
— when full, write it to disk in one efficient contiguous
transfer
* right away, you’ve decreased seeks by a factor of 1M/4K

= 250

* S0 the disk contains a single big long log of
changes, consisting of threaded segments

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

LFS basic approach

Use the disk as a /og
— Alog is a data structure that is written only at one end

If the disk were managed as a log, there would
be effectively no seeks

— Reads presumed to hit in cache

— The head is already in the right place for the next write

If the disk is a log then...

— New data and metadata (i-nodes, directories) are
accumulated in the buffer cache, then written all at once
in large blocks (e.g., segments of .5M or 1M)

This would greatly increase disk write throughput

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

LFS vs. UNIX File System or FFS

filel

file2

dirl

dirl dir2

filel file2

06/04/11

dir2

Unix File
System

I-node

. directory

data

. I-node map

Log >

Log-Structured
File System

© 2011 Gribble, Lazowska, Levy, Zahorjan

Blocks written to
create two 1-block
files: dirl/filel and
dir2/file2, in UFS and
LFS

7

LFS challenges

Locating data written in the log

— FFS places files in a well-known location, LFS writes
data “at the end of the log”

Even locating i-nodes!
— in LFS, i-nodes too go in the log!

Managing free space on the disk
— disk is finite, and therefore log must be finite

— so cannot just keep appending to log, ad infinitum!
* need to recover deleted blocks in old part of log
* need to fill holes created by recovered blocks

(Note: Reads are the same as FS/FFS once you
find the I-node - and writes are a ton faster)

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

Locating data and I-nodes

 LFS uses i-nodes to locate data, just like
FS/FFS

 LFS appends i-nodes to end of log, just like

data
— makes them hard to find

e Solution
— use another level of indirection: “i-node maps”
* i-node maps map file #s (i-node #s) to i-node location

— location of i-node map blocks are keptin a
checkpoint region
* checkpoint region has a fixed location

— cache i-node maps in memory for performance

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

Free space management

 Reads are no different than in UNIX File
System or FFS, once we find the i-node for a
file
— using the i-node map, which is cached in memory,
find the i-node, which gets you to the blocks
 Every write causes new blocks to be added to
the current “segment buffer” in memory
— when segment is full, it is written to disk

 Over time, segments in the log become
fragmented as we replace old blocks of files
with new blocks

— we can “garbage collect” segments with little “live
data and recover the disk space

n

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Segment cleaning

Log is divided into (large) segments
Segments are “threaded” on disk (linked list)
— segments can be anywhere

 Reclaim space by cleaning segments
— read segment
— copy live data to end of log
— now have free segment you can reuse!
 Cleaning is an issue
— costly overhead, when do you do it?

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

Detall: Cleaning

* The major problem for a LFS is cleaning, i.e.,
producing contiguous free space on disk

A cleaner daemon “cleans” old segments, i.e.,
takes several non-full segments and compacts
them, creating one full segment, plus free
space

* The cleaner chooses segments on disk based
on:

— utilization: how much is to be gained by cleaning
them

— age: how likely is the segment to change soon
anyway

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

LFS summary

As caches get big, most reads will be satisfied
from the cache

No matter how you cache write operations,
though, they are eventually going to have to
get back to disk

Thus, most disk traffic will be write traffic

If you eventually put blocks (i-nodes, file
content blocks) back where they came from,
then even if you schedule disk writes cleverly,
there’s still going to be a lot of head
movement (which dominates disk
performance)

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

 Suppose, instead, what you wrote to disk was a
log of changes made to files

— log includes modified data blocks and modified
metadata blocks

— buffer a huge block (“segment”) in memory - 512K or

1M
— when full, write it to disk in one efficient contiguous
transfer
* right away, you’ve decreased seeks by a factor of 1M/4K

= 250

 So the disk is just one big long log, consisting of
threaded segments

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

 What happens when a crash occurs?
— you lose some work
— but the log that’s on disk represents a consistent
view of the file system at some instant in time
* Suppose you have to read a file?
— once you find its current i-node, you're fine

— i-node maps provide a level of indirection that makes
this possible

* details aren’t that important

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

 How do you prevent overflowing the disk
(because the log just keeps on growing)?

— segment cleaner coalesces the active blocks from
multiple old log segments into a new log segment,
freeing the old log segments for re-use

* Again, the details aren’t that important

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

radeoffs

e LFS wins, relative to FFS

— metadata-heavy workloads
* small file writes
* deletes

(metadata requires an additional write, and FFS does
this synchronously)

e LFS loses, relative to FFS

— many files are partially over-written in random order
 file gets splayed throughout the log

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

LFS history

 Designed by Mendel Rosenblum and his advisor John
Ousterhout at Berkeley in 1991
— Rosenblum went on to become a Stanford professor and to
co-found VMware, so even if this wasn’t his finest hour,
he’'s OK
 Ex-Berkeley student Margo Seltzer (faculty at Harvard)
published a 1995 paper comparing and contrasting LFS
with conventional FFS, and claiming poor LFS
performance in some realistic circumstances

* Qusterhout published a “Critique of Seltzer’s LFS
Measurements,” rebutting her arguments

* Seltzer published “A Response to Ousterhout’s Critique
of LFS Measurements,” rebutting the rebuttal

e Qusterhout published “A Response to Seltzer’s
Response,” rebutting the rebuttal of the rebuttal

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

* Moral of the story

— If you're going to do OS research, you need a thick
skin
— Very difficult to predict how a FS will be used

e So it’'s hard to generate reasonable benchmarks, let
alone a reasonable FS design

— Very difficult to measure a FS in practice

* depends on a HUGE number of parameters, involving
both workload and hardware architecture

06/04/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

	CSE 451: Operating Systems Spring 2006 Module 17 Berkeley Log-Structured File System
	More on caching (applies both to FS and FFS)
	Caching writes, vs. reads
	So, you can make things better, but …
	LFS inspiration
	LFS basic approach
	LFS vs. UNIX File System or FFS
	LFS challenges
	Locating data and i-nodes
	Free space management
	Segment cleaning
	Detail: Cleaning
	LFS summary
	Slide 14
	Slide 15
	Slide 16
	Tradeoffs
	LFS history
	Slide 19

