CSE451 Winter 2010 Project #3
Out: January 27, 2010
Due: February 17, 2010 by 11:59 PM (late assignments will lose ½ grade point per day)

Objectives

In the first two projects you learned about some of the internals of the Windows Operating System. Your third project, done in groups of two, will practice using threads and synchronization to write a multi-threaded multi-buffered copy file program. The principal objectives of this project are:

1. To practice thinking and writing multi-threaded applications

2. Design and implement a multi-buffering

3. Working on a group project

4. Look at performance aspects

Getting Started

Unlike the previous projects this project involves writing a single user mode program Windows program in C. You may use Visual Studio to do the development. Located in O:\cse\courses\cse451\10wi\Project3 is a very simple skeleton code base to help you get started.

Things you will need to know how to do are:

1. Manipulate files with open, create, read, write, and close.

2. Start, and synchronize threads

3. Time your operation

Your assignment:

You are doing an enhanced command line program to copy one or more files to another location. It should behave similar to the command line COPY program in Windows except with a different set of switches, slightly different syntax and other limitations as noted below. The syntax for your program is:

MTCOPY [/T:number] [/B:size] [/V] <source>+ destination

 /T:number - Specifies the number of threads to use in the copy function. The default value is 1.

 /B:size - Specifies the maximum buffer size to use in the copy function. The default value is 4096.

 /V – Verbose switch used to report the total time needed to copy the file(s). It also prints the MB per second throughput.
 source - Specifies one or more source files to be copied. Your code does not need to handle wildcard name expansion, because there is already a procedure to handle wildcard expansion in main’s argc and argv arguments. For example, “MTCOPY *.c” can be made to expand to “MTCOPY first.c second.c third.c ...” before main is called.

 destination - Specifies the directory for the new file(s).
Your program essentially does a set of read and writes of data between the source and destination. Internally you will use the buffer size specified in the command line to copy the data.

MTCOPY is to utilize up to the specified number of threads complete the task with as much parallelism and efficiency as possible. Each thread will have exactly one buffer that it uses to read and write data. The program should be smart enough to not use 10 threads to copy a single two byte file. But it might use all of its threads to copy a single 1GB file or to copy 100 small files.

 The /V switch is used by MTCOPY to report its total throughput rate in terms of MB per second, and its read and write throughput rate.

After completing MTCOPY your continued assignment is to analyze its performance combinations of threads, files, buffer sizes, file sizes, and mixed media. For example, copy ws03esp1.vhd as the large file and maybe all of \windows\system32 directory for a set of small to medium sized files. Try this using various number of threads and buffer sizes. In addition you need to consider the performance copying using the local hard disk, a network drive, and flash drive. Be as exhaustive as practical in your experimentation. You will need to do a concise write-up reporting your results.

Your team decides how to actually divide up and conquer the copy task between multiple threads. Be creative, there are many good solutions.

Windows allows you to do synchronous I/O (i.e., each thread blocks waiting for I/O to complete) and asynchronous I/O (i.e., a thread issues the I/O and is notified later when the I/O completes). In your program limit yourself to synchronous I/O. We are looking for parallelism and accuracy. Accuracy will be easy to determine when we “diff” the files after they’re copied.

Treat this assignment as if you are writing an actual copy utility, meaning that good error reporting, program behavior, and diagnostics all contribute to the fit and finish of the program.

Project limitations (aka Extra Credit):
The first part of the project is bounded to using multiple threads and synchronous I/O. For extra credit add a “/A:number” switch that overrides the /T switch by changing the program to use one thread and do all I/O asynchronously. The “number” specifies the maximum amount of I/O that can be outstanding at anytime (i.e., the amount of parallelism in the program). As program designers you can choose a good default value. The /V in this case should also report the maximum number of parallel I/O that was outstanding at anytime.

Turn-in:
Be prepared to turn in the following

1. Executables images of your test program.

2. Source code for your test program

3. A write up listing the two students who worked on the project and summarizing your performance analysis.

You'll be submitting the source code, executables, and write-up to Catalyst.

Grading Standard:
The following guideline will be used to grade the projects

· An “E” for turning in nothing and/or doing nothing
· A “D” for a project that is dysfunctional. It may not compile or it gives completely bogus results

· A “C” for a project that is barely functional. Or it might miss in a few cases but generally it is okay. Or you can sort of understand how the code works but it is not clear

· A “B” for a project that is functionally complete. It is clean and does the job but without any real elegance. It is a meat and potatoes type solution. So a “B” simply accomplishes the objectives, but nothing fancy

· An “A” is for projects that go well beyond just being functional. They are works of art. We can look at an “A” project and it would stand high above the “B” project.
Addendum

I suggest that you look at the MSDN website (http://msdn.microsoft.com/en-us/library/default.aspx) for a complete description of the Win32 APIs.

File operations

Three basic file operations are: CreateFile, ReadFile, and WriteFile. You will also need to look through the File Management Functions listed on the MSDN website to see the other functions that will query/set file sizes and enumerate directories.

File operations can be a little tricky because one of the attributes of an opened file is whether you want to do synchronous or asynchronous I/O. Synchronous Read and Write calls do not return until the operation completes; whereas, asynchronous Read and Write calls return immediately, and the user is later signaled via an event when the operation completes. In Windows terminology this is also called Overlapped I/O. The project uses synchronous I/O, unless you are also doing the extra credit.

Now, according to the MSDN website there is a serialization restriction if you use multiple threads to issue multiple requests to a file handle opened for synchronous I/O. What this means is that while you may be attempting to read or write from multiple places in a file simultaneously it will be serialized if you use a handle opened for synchronous I/O. The way I would work around this restriction is to use multiple handles (i.e., I would call CreateFile multiple times on the same file with a proper share mode). Then I can issue multiple I/O on a single file and know that they will not be serialized.

Thread operations and synchronizations

The basic operations to create a new thread, and synchronize threads using mutexes are: CreateThread, CreateMutex, ReleaseMutex, WaitForSingleObject, and WaitForMultipleObjects.
cse451 Project #3.doc
Page 2 of 4
1/25/2010

