
CSE 451:
Operating
Systems

Winter 2009

Module 4
Processes

Mark
Zbikowski

Gary
Kimura

9 April 2008 2

Process management

• This module begins a series of topics on processes,
threads, and synchronization
– this is the most important part of the class

• Today: processes and process management
– what are the OS units of ownership / execution?

– how are they represented inside the OS?

– how is the CPU scheduled across processes?

– what are the possible execution states of a process?
• and how does the system move between them?

9 April 2008 3

The process

• The process is the OS’s abstraction for execution
– the unit of ownership

– the unit of execution (sorta)

– the unit of scheduling (kinda)

– the dynamic (active) execution context
• compared with program: static, just a bunch of bytes

• Process is often called a job, task, or sequential
process
– a sequential process is a program in execution

• defines the instruction-at-a-time execution of a program

9 April 2008 4

What’s in a process?

• A process consists of (at least):
– an address space

– the code for the running program

– the data for the running program

– at least one thread
• Registers, IP

• Floating point state

• Stack and stack pointer

– a set of OS resources
• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

9 April 2008 5

• There’s a data structure called the process object
(_KPROCESS in base\ntos\inc\ke.h) that holds all this stuff
– Processes are identified from user space by a process ID, returned by

NtCreateProcess.

• OS keeps all of a process’s hardware execution state in the
_KTHREAD (same file) when the process isn’t running
– IP, SP, registers, etc.

– when a process is unscheduled, the state is transferred out of the
hardware into the _KTHREAD

• Note: It’s natural to think that there must be some esoteric
techniques being used
– fancy data structures that’d you’d never think of yourself

Wrong! It’s pretty much just what you’d think of!

Except for some clever assembly code…

The Process Object

9 April 2008 6

A process’s address space
(very simplified)

0x00000000

0x7FFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

IP

SP

9 April 2008 7

Process creation

• New processes are created by existing processes
– creator is called the parent

– created process is called the child

– what creates the first process, and when?

• In some systems, parent defines or donates
resources and privileges for its children
– LINUX/UNIX: child inherits parent’s security context,

environment, open file list, etc.

– NT: all the above are optional (remember, mechanism vs
policy), the Windows subsystem provides policy.

• When child is created, parent may either wait for it to
finish, or may continue in parallel, or both!

9 April 2008 8

Process Creation 2

• In LINUX, fork/exec pairs.
– fork() clones the current process, duplicates all memory,

“inherit” open files
– exec() throws away all memory and loads new program into

memory. Keeps all open files!
– Very useful, but… wasteful. >99% of all fork() calls followed

by exec(). Copy-on-write memory helps but still a big
overhead.

• Windows has parent process doing the work
– Create process
– Fill in memory
– Pass handles
– Create thread with stack and IP
– Many system calls (compared with LINUX) but all policy is in

user code. More flexible.

9 April 2008 9

Process Destruction

• Privileged operation!
– Process can always kill itself

– Killing another process requires permission

• Terminates all threads (next lecture)

• Releases owned resources to known state
– Files

– Events

– Memory

• Notification sent to interested parties

• KPROCESS is freed

