CSE 451.

Operating

Systems
Winter 2009

Module 4
Processes

Mark
ZbikowsKi

Gary
Kimura



Process management

e This module begins a series of topics on processes,
threads, and synchronization

— this is the most important part of the class

e Today: processes and process management
— what are the OS units of ownership / execution?
— how are they represented inside the OS?
— how is the CPU scheduled across processes?

— what are the possible execution states of a process?
« and how does the system move between them?

9 April 2008



The process

 The process is the OS’s abstraction for execution
— the unit of ownership
— the unit of execution (sorta)
— the unit of scheduling (kinda)
— the dynamic (active) execution context
« compared with program: static, just a bunch of bytes
* Process is often called a job, task, or sequential
process

— a sequential process Is a program in execution
 defines the instruction-at-a-time execution of a program

9 April 2008



What's in a process?

e A process consists of (at least):
— an address space
— the code for the running program
— the data for the running program

— at least one thread
* Registers, IP
» Floating point state
« Stack and stack pointer

— a set of OS resources
« open files, network connections, sound channels, ...
* In other words, it's all the stuff you need to run the
program
— or to re-start it, if it’s interrupted at some point

9 April 2008



he Process Object

 There’s a data structure called the process object

(_KPROCESS in base\ntos\inc\ke.h) that holds all this stuff

— Processes are identified from user space by a process ID, returned by
NtCreateProcess.

e OS keeps all of a process’s hardware execution state in the
_KTHREAD (same file) when the process isn’t running

— IP, SP, registers, etc.

— when a process is unscheduled, the state is transferred out of the
hardware into the KTHREAD

« Note: It's natural to think that there must be some esoteric
techniques being used

— fancy data structures that'd you'd never think of yourself
Wrong! It's pretty much just what you’d think of!
Except for some clever assembly code...

9 April 2008 5



A process’s address space
(very simplified)

stack
(dynamic allocated mem)

;
T

address space heap
(dynamic allocated mem)

OX7FFFFFFF

static data
(data segment)

code

v

0x00000000 (text segment)

9 April 2008

“— SP



Process creation

 New processes are created by existing processes
— creator is called the parent
— created process is called the child
— what creates the first process, and when?

e In some systems, parent defines or donates
resources and privileges for its children

— LINUX/UNIX: child inherits parent’s security context,
environment, open file list, etc.

— NT: all the above are optional (remember, mechanism vs
policy), the Windows subsystem provides policy.

 When child is created, parent may either walit for it to
finish, or may continue in parallel, or both!

9 April 2008



Process Creation 2

* In LINUX, fork/exec pairs.

— fork() clones the current process, duplicates all memory,
“Inherit” open files

— exec() throws away all memory and loads new program into
memory. Keeps all open files!

— Very useful, but... wasteful. >99% of all fork() calls followed
by exec(). Copy-on-write memory helps but still a big
overhead.

 Windows has parent process doing the work

— Create process

— Fill in memory

— Pass handles

— Create thread with stack and IP

— Many system calls (compared with LINUX) but all policy is in
user code. More flexible.

9 April 2008 8



Process Destruction

* Privileged operation!
— Process can always Kill itself
— Killing another process requires permission
e Terminates all threads (next lecture)
 Releases owned resources to known state
— Files
— Events
— Memory
 Notification sent to interested parties

« KPROCESS is freed

9 April 2008



