
1

CSE451 Operating System s
 Win ter 2009

Module 3
Com ponen ts and Structure

Mark Zbikowski
Gary Kim ura

2

OS structure

• The OS sits between application program s and the
hardware
– it m ediates access and abstracts away ugliness

– program s request services via exceptions (traps or fau lts)

– devices request atten tion via in terrupts

O S

P
1

P
2

P
3 P

4

D
1 D

2
D
3

D
4

e x c e
p t i o

n
i n t e
r r u p

t

d i s p
a t c h

s t a r
t

i / o

3

Major OS com ponen ts

• Processes
• Mem ory
• I/ O
• Secondary storage
• File system s
• Protection
• Security
• Networking
• Accoun ting
• Shells (com m and in terpreter, or OS UI)
• GUI

4

Process m anagem ent

• An OS executes m any kinds of activities:
– users’ program s

– batch jobs or scrip ts

– system program s

• prin t spoolers, nam e servers, file servers, network
daem ons, …

• Each of these activities is encapsulated in a process
– a process includes the execution con text

• PC, registers, VM, OS resources (e.g., open files), etc…

• plus the program itself (code an d data)

– the OS’s p rocess m odule m anages these processes

• creation , destruction , schedu ling, …

5

Program / processor/ process

• Note that a program is totally passive
– just bytes on a disk that encode in structions to be run

• A process is an in stance of a program being
executed by a (real or virtual) processor
– at any in stan t, there m ay be m any processes runn ing

copies of the sam e program (e.g., an editor); each p rocess
is separate and (usually) independen t

– Use TASKMGR to list all p rocesses

p r o c e s s A p r o c e s s B

c o d
e

s t a
c k
P C

r e g
i s t
e r s

c o d
e

s t a
c k
P C

r e g
i s t
e r s

p a g
e

t a b
l e s

r e s
o u r
c e s

p a g
e

t a b
l e s

r e s
o u r
c e s

6

States of a user p rocess
(bu t wait un til we talk about threads…)

r u n n i
n g

r e a d y

b l o c k
e d

e x c e p
t i o n

i n t e r
r u p t

d i s p a
t c h

i n t e r
r u p t

7

Process operations

• The OS provides the following kinds operations on
processes (i.e., the p rocess abstraction in terface):
– create a process

– delete a process

– suspend a process

– resum e a process

– clone a process

– in ter-p rocess com m un ication

– in ter-p rocess synchron ization

– create/ delete a ch ild process (subprocess)

8

Mem ory m anagem ent

• The prim ary m em ory (or RAM) is the directly
accessed storage for the CPU
– program s m ust be stored in m em ory to execu te

– m em ory access is fast (e.g., 60 n s to load/ store)

• but m ost m em ory doesn ’t survive power failures

• OS m ust:
– allocate m em ory space for program s (exp licitly and

im plicitly)

– deallocate space when needed by rest of system

– m ain tain m appings from physical to virtual m em ory

• th rough page tables (hardware support feature)

– decide how m uch m em ory to allocate to each p rocess

• a policy decision

– decide when to rem ove a process from m em ory

• also policy

9

I/ O

• A big chunk of the OS kernel deals with I/ O
– hundreds of thousands of lines in NT

• The OS provides a standard in terface between
program s (user or system) and devices
– file system (disk), sockets (network), fram e buffer (video)

• Device drivers are the rou tines that in teract with
specific device types
– encapsulates device-specific knowledge

• e.g., how to in itialize a device, how to request I/ O, how
to handle in terrup ts or errors

• exam ples: SCSI device drivers, Ethernet card drivers,
video card drivers, sound card drivers, …

• Note: Windows has ~35,000 device drivers!

10

Secondary storage

• Secondary storage (disk, tape) is persisten t m em ory
– often m agnetic m edia, su rvives power failures (hopefu lly)

– This can be both good and bad

• Routines that in teract with disks are typ ically at a
very low level in the OS
– used by m any com ponen ts (file system , VM, …)

– han dle schedu ling of disk operations, head m ovem en t,
error handling, and often m anagem en t of space on disks

– disk con trollers are con tinually getting sm arter

• Usually independen t of file system
– although there m ay be cooperation

– file system knowledge of device details can help optim ize
perform ance

• e.g., p lace related files close together on disk

11

File system s

• Secondary storage devices are crude and awkward
– e.g., “write 4096 byte block to sector 12”

• File system : a conven ien t abstraction
– defines logical objects like files and directories

• hides details abou t where on disk files live

– as well as operations on objects like read and write

• read/ write byte ranges in stead of blocks

• A file is the basic un it of long-term storage
– file = nam ed collection of persisten t in form ation

• A directory is just a special kind of file
– directory = nam ed file that con tain s nam es of other files

and m etadata about those files (e.g., file size)

• Note: Sequen tial byte stream is on ly one possibility!

12

File system operations

• The file system in terface defines standard
operations:
– file (or directory) creation and deletion

– m anipu lation of files and directories (read, write, extend,
renam e, protect)

– copy

– lock

• File system s also provide h igher level services
– accoun ting and quotas

– (som etim es) backup

– (som etim es) indexing or search

– (som etim es) file version ing

13

Protection

• Protection is a general m echan ism used throughout
the OS
– all resources needed to be protected

• m em ory

• processes

• files

• devices

• CPU tim e

• …

– protection m echan ism s help to detect and con tain
un in ten tional errors, as well as preven ting m alicious
destruction

14

Com m and in terpreter (shell)

• A particu lar p rogram that handles the in terpretation
of users’ com m ands and helps to m anage processes
– user inpu t m ay be from keyboard (com m and-line

in terface), from scrip t files, or from the m ouse (GUIs)

– allows users to launch and con trol new program s

• On som e system s, com m and in terpreter m ay be a
standard part of the OS (e.g., MS DOS, Apple II)

• On others, it’s just non-privileged code that
provides an in terface to the user
– e.g., bash / csh / tcsh / zsh on UNIX

• On others, there m ay be no com m and language
– e.g., MacOS

15

Accoun ting

• Keeps track of resource usage
– both to en force quotas

• “you’re over your disk space lim it”

– or to p roduce bills

• tim eshared com puters like m ain fram es

• hosted services

16

OS structure

• It’s not always clear how to stitch OS m odules
together:

Mem ory
Managem ent

I/O System

Secondary Storage
Managem ent

File System

Protect ion System

Account ing System

Process Managem ent

Com m and Interpreter

Inform at ion Services

Error Handling

17

OS structure

• An OS consists of all of these com ponen ts, p lus:
– m any other com ponen ts

– system program s (privileged and non -privileged)

• e.g., bootstrap code, the in it p rogram , …

• Major issue:
– how do we organ ize all th is?

– what are all of the code m odules, and where do they exist?

– how do they cooperate?

• Massive software engineering and design problem
– design a large, com plex p rogram that:

• perform s well, is reliable, is extensible, is backwards
com patible, …

18

Early structure: Monolith ic

• Traditionally, OS’s (like UNIX) were built as a
m onolith ic en tity:

e v e r y t h i n g

u s e r p r o g r a m s

h a r d w a r e

O S

19

Monolith ic design

• Major advan tage:
– cost of m odule in teractions is low (procedure call)

• Disadvan tages:
– hard to understand

– hard to m odify

– un reliable (no isolation between system m odules)

– hard to m ain tain

• What is the alternative?
– find a way to organ ize the OS in order to sim plify its design

and im plem en tation

20

Layering

• The traditional approach is layering
– im plem en t OS as a set of layers

– each layer presen ts an enhan ced ‘virtual m achine’ to the layer
above

• The first descrip tion of th is approach was Dijkstra’s THE
system
– Layer 5: Job Managers (Execute users’ program s)

– Layer 4: Device Managers (Han dle devices and provide
buffering)

– Layer 3: Console Manager (Im plem en ts virtual consoles)

– Layer 2: Page Manager (Im plem en ts virtual m em ories for each
process)

– Layer 1: Kernel (Im plem en ts a virtual p rocessor for each
process)

– Layer 0: Hardware

• Each layer can be tested and verified independen tly

21

Problem s with layering

• Im poses h ierarch ical structure
– but real system s are m ore com plex:

• file system requ ires VM services (buffers)

• VM would like to use files for its backing store

– strict layering isn ’t flexible enough

• Poor perform ance
– each layer crossing has overhead associated with it

• Disjunction between m odel and reality
– system s m odeled as layers, bu t not really built that way

22

Hardware Abstraction Layer

• An exam ple of layering in
m odern operating system s

• Goal: separates hardware-
specific rou tines from the “core”
OS
– Provides portability

– Im proves readability

C o r e O S
(f i l e s y s t e m ,

s c h e d u l e r ,
s y s t e m c a l l s)

H a r d w a r e A b s t r a c t i o n
L a y e r

(d e v i c e d r i v e r s ,
a s s e m b l y r o u t i n e s)

23

Microkernels

• Popular in the late 80’s, early 90’s
– recen t resurgence of popularity

• Goal:
– m inim ize what goes in kernel

– organ ize rest of OS as user-level processes

• This results in :
– better reliability (isolation between com ponen ts)

– ease of extension and custom ization

– poor perform ance (user/ kernel boundary crossings)

• First m icrokernel system was Hydra (CMU, 1970)
– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple), in

som e op in ions Windows NT (Microsoft)

• Windows NT (aka XP/ Vista/ Win7) designed as m icrokernel but
executed as single kernel-m ode im age

24

Microkernel System Structure

hardware

microkernel low-level
VM protection

processor
control

system processes
file system

thread
system

communication

external
paging

network
support

high-level
scheduling

user processes

kernel mode

user mode

25

Hardware (CPU,
devices)

Application In terface (API)

Hardware Abstraction Layer

File
System s

Mem ory
Manage

r

Process
Manage

r

Network
Support

Device
Drivers

In terrup
t

Handler
s

Boot &
In it

JavaPhotosho
p

Firefox

O
p

er
at

in
g

Sy
st

em
P

o
rtab

le
U

se
r

A
p

p
s

Acrobat

The San itized Picture of OS Structure

26

Sum m ary and Next Tim e

• Sum m ary
– OS design has been a evolu tionary process of trial and

error. Probably m ore error than success
– Successfu l OS’s designs have run the spectrum from

m onolith ic, to layered, to m icro kernels, to virtual
m achines

– The role and design of an OS is still evolving
– It is im possible to p ick one “correct” way to structu re an OS

• Next Tim e
– Processes, one of the m ost fundam en tal p ieces in an OS
– What is a process, what does it do, and how does it do it

