CSE451 Operating Systems
Winter 2009

Module 3
Componentsand Structure

Mark Zbikowski
Gary Kimura

OSstructure

e The OSsitsbetween application programsand the
hardware
— It mediates access and abstracts away ugliness
— programsrequest services via exceptions (traps or faults)
— devicesreguest attention viainterrupts

Major OScomponents

Processes
Memory

1/ O

Secondary storage
File systems
Protection
Security
Networking
Accounting

Shells (command interpreter, or OSUI)
GUI

Process management

 An OSexecutes many kinds of activities:
— users' programs
— batch jobsor scripts
— system programs
e print spoolers, name servers, file servers, network
daemons, ...
e Each of these activitiesisencapsulated in aprocess
— aprocessincludesthe execution context
* PC, reqgisters, VM, OSresources (e.g., open files), etc...
* plusthe program itself (code and data)
— the OS's process module manages these processes
e creation, destruction, scheduling, ...

Program/ processor/ process

 Notethat aprogram istotally passive
— just byteson adisk that encode instructionsto berun

e Aprocessisan instance of aprogram being
executed by a (real or virtual) processor

— at any instant, there may be many processesrunning
copies of the same program (e.g., an editor); each process
Isseparate and (usually) independent

— Use TASKMGR to list all processes

p r cC e s s A pr ocess B
c od D ag c od D ag
€ e € e
c k | e s c k e s
DM DM
| Y2 | Y2
reg I e S reg I e S
i st O ur-r i st O ur-r
v e C e S v e C e S

States of a user process

(but wait until we talk about threads...)

Process operations

e The OSprovidesthe following kinds operationson
processes (i.e., the process abstraction interface):

create a process

delete a process

suspend a process

resume aprocess

clone aprocess

Inter-process communication
Inter-process synchronization

create/ delete a child process (subprocess)

Memory management

The primary memory (or RAM) isthe directly
accessed storage for the CPU
— programsmust be stored in memory to execute
— memory access isfast (e.g., 60 nsto load/ store)
* but most memory doesn’t survive power failures

OSmust:

— allocate memory space for programs (explicitly and
implicitly)

— deallocate space when needed by rest of system

— maintain mappingsfrom physical to virtual memory
e through page tables (hardware support feature)

— decide how much memory to allocate to each process
e apolicy decision

— decide when to remove a process from memory
 also policy

1/ 0O

A big chunk of the OSkernel dealswith I/ O
— hundreds of thousandsof linesin NT

The OSprovides astandard interface between
programs (user or system) and devices
— file system (disk), sockets (network), frame buffer (video)

Devicedriversaretheroutinesthat interact with
specific device types
— encapsulates device-specific knowledge

* e.g., howtoinitialize adevice, how to request I/ O, how
to handleinterruptsor errors

» examples: SCSI device drivers, Ethernet card drivers,
video card drivers, sound card drivers, ...

Note: Windows has ~35,000 device drivers!

Secondary storage

e Secondary storage (disk, tape) ispersistent memory
— often magnetic media, survives power failures (hopefully)
— Thiscan be both good and bad

 Routinesthat interact with disks are typically at a
very low level in the OS
— used by many components (file system, VM, ...)

— handle scheduling of disk operations, head movement,
error handling, and often management of space on disks

— disk controllersare continually getting smarter

 Usually independent of file system
— although there may be cooperation

— file system knowledge of device details can help optimize
performance

* e.g., placerelated files close together on disk 10

File systems

Secondary storage devices are crude and awkward
— e.g., “write 4096 byte block to sector 12”

File system: a convenient abstraction

— defineslogical objectslike filesand directories
* hidesdetailsabout where on disk fileslive

— aswell asoperationson objectslike read and write
* read/write byterangesinstead of blocks

Afileisthe basic unit of long-term storage
— file =named collection of persistent information

Adirectoryisjust aspecial kind of file

— directory = named file that contains names of other files
and metadata about those files (e.g., file size)

Note: Sequential byte stream isonly one possibilityl!1

File system operations

 Thefilesystem interface defines standard
operations:
— file (or directory) creation and deletion

— manipulation of filesand directories (read, write, extend,
rename, protect)

— COpy
— lock
* File systemsalso provide higher level services
— accounting and quotas
— (sometimes) backup
— (sometimes) indexing or search
— (sometimes) file versioning

12

Protection

Protection isageneral mechanism used throughout

the OS

— all resources needed to be protected
* memory

processes

files

devices

CPU time

— protection mechanisms help to detect and contain
unintentional errors, aswell as preventing malicious
destruction

13

Command interpreter (shell)

A particular program that handlesthe interpretation
of users’ commands and helpsto manage processes

— user input may be from keyboard (command-line
Interface), from script files, or from the mouse (GUIs)

— allowsusersto launch and control new programs

On some systems, command interpreter may be a
standard part of the OS(e.g., MSDOQOS, Applell)

On others, it’sjust non-privileged code that
provides an interface to the user
— e.g., bash/csh/tcsh/zsh on UNIX

On others, there may be no command language
— e.g.,, MacOS

14

Accounting

e Keepstrack of resource usage
— both to enforce quotas
e “you’re over your disk space limit”
— or to produce bills
e timeshared computerslike mainframes
* hosted services

15

OSstructure

e |t’snot always clear how to stitch OSmodules
together:

[Com,mand Interpreter]

el
(Inform ation 5%7%%;\\

[Erfor Handling m\(Accounting Systera

A A\
/ﬁo/tectionSyst

(D

File Syst

Memory k:feco‘ndary ;t//rage]
[Process Management Management Management
N
/O System

16

OSstructure

 An OSconsists of all of these components, plus:
— many other components
— system programs (privileged and non-privileged)
e e.g., bootstrap code, theinit program, ...
« Majorissue:
— how do we organize all this?
— what are all of the code modules, and where do they exist?
— how do they cooperate?

 Massive software engineering and design problem
— design alarge, complex program that:

e performswell, isreliable, isextensible, is backwards
compatible, ...

17

Early structure: Monolithic

e Traditionally, OSs(like UNIX) were built asa
monolithic entity:

useir progr ams

OS ever vyt hi njg

har dwar e

Monolithic design

Major advantage:
— cost of module interactionsislow (procedure call)

Disadvantages:

— hard to understand

— hard to modify

— unreliable (no isolation between system modules)
— hard to maintain

What isthe alternative?

— find away to organize the OSin order to simplify itsdesign
and implementation

19

Layering

 Thetraditional approach islayering
— implement OSas aset of layers
— each layer presents an enhanced ‘virtual machine’ to the layer
above
 Thefirst description of thisapproach was Dijkstra’s THE
system
— Layer 5: Job Managers (Execute users’ programs)

— Layer 4: Device Managers (Handle devices and provide
buffering)

— Layer 3: Console Manager (Implementsvirtual consoles)

— Layer 2: Page Manager (Implementsvirtual memories for each
process)

— Layer 1: Kernel (Implements avirtual processor for each
process)

— Layer 0: Hardware

20

Problemswith layering

 Imposeshierarchical structure
— but real systemsare more complex:
* file system requires VM services (buffers)
VM would like to use files for its backing store
— strict layeringisn’t flexible enough
* Poor performance
— each layer crossing has overhead associated with it

 Disjunction between model and reality
— systemsmodeled as layers, but not really built that way

21

Hardware Abstraction Layer

 An example of layeringin
modern operating systems

 Goal: separates hardware-
specific routinesfrom thei‘cc?re’i’
OS

— Provides portability
— Improves readabil_ilty

S C
SYy S
ar d w a

(de v i
assem

22

Microkernels

Popular in the late 80’s, early 90’s

— recent resurgence of popularity
Goal:

— minimize what goesin kernel

— organizerest of OSas user-level processes
Thisresultsin:

— Dbetter reliability (isolation between components)

— ease of extension and customization

— poor performance (user/kernel boundary crossings)
First microkernel system was Hydra (CM U, 1970)

— Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OSX (Apple), in
some opinionsWindows NT (Microsoft)

Windows NT (aka XP/Vista/ Win7) designed as microkernel but
executed assingle kernel-mode image

23

Microkernel System Structure

O
USer processes Q OO O O

file system Igh-leve
scheduling

thread xterna etWorR

system paging) |kupport

communication \
microkernel low-level processor kernel mode

VM protection control

user mode

system processes

hardware

24

User Apps

Operating

The Sanitized Picture of OS Structure

{ Firefox || Photosho || Acrobat Java
g Appllcatlré)n Interface (API)
File Memory| | Process | | Network
< Systems| | Manage Manage | | Support
£ Device r Interrup r Boot-&
% Drivers t Init
N Hardware'l%%ﬂ%%t on Layer

Hardware (CPU,

devices)

3|ge1iod

25

Summary and Next Time

e Summary

OSdesign has been a evolutionary process of trial and
error. Probably more error than success

Successful OSsdesigns have run the spectrum from
monolithic, to layered, to micro kernels, to virtual
machines

Therole and design of an OSisstill evolving
It isimpossibleto pick one “correct” way to structure an OS

e Next Time

Processes, one of the most fundamental piecesin an OS

— What isaprocess, what doesit do, and how doesit do it

26

