
CSE 451: 
Operating 
Systems

 Winter 2009 

Module 17
 Authentication / 
Authorization / 

Security

Mark 
Zbikowski

Gary 
Kimura



03/15/09  2

Terminology I:  the entities

• Principals – who is acting?
– User / Process Creator
– Code Author

• Objects – what is that principal acting on?
– File
– Network connection

• Rights – what actions might you take?
– Read
– Write

• Familiar Windows file system example:
– Guest / user / CSE451
– read / write / append / enumerate



03/15/09  3

Terminology II:  the activities

• Authentication – who are you?
– identifying principals (users / programs)

• Authorization – what are you allowed to do?
– determining what access users and programs have to specific 

objects

• Auditing – what happened
– record what users and programs are doing for later analysis / 

prosecution



03/15/09  4

Authentication

• How does the provider of a secure service know who 
it’s talking with?
– Example: WinLogon

• We’ll start with the local case (the keyboard is 
attached to the machine you want to login to)

• Then we’ll look at a distributed system



03/15/09  5

Local Login

(“Local” ⇒ this connection is assumed secure)

How does the OS know that I’m ‘emmert’?



03/15/09  6

Shared Secret

My dog 
has fleas

Emmert:
My dog has 

fleas

The shared secret is typically a password, but it could be something else:
• Retina scan
• A key



03/15/09  7

Simple Enough

• This seems pretty trivial

• Like pretty much all aspects of security, there are 
perhaps unexpected complications

• As an introduction to this, let’s look at briefly at the 
history of password use



03/15/09  8

• CTSS (1962): password file {user name, user 
identifier, password}

If a bad guy gets hold of the password file, you’re in 
deep trouble

– Any flaw in the system that compromises the password file 
compromises all accounts!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”



03/15/09  9

Two Choices

1. Make sure there are no flaws in the system (ha!)
2. Render knowledge of the password file useless

Unix (1974): store encrypted forms of the passwords

My dog 
has 
fleas

Emmert:
2zppQ01c



03/15/09  10

Aside on Encryption

• Encryption: takes a key and plaintext and creates ciphertext: Ek1(M) = C
• Decryption: takes ciphertext and a key and recovers plaintext: Dk2(C) = M

• Symmetric algorithms (aka secret-key aka shared secret algorithms):
– k1 = k2 (or can get k2 from k1)

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Computational requirements:
– Deducing M from Ek(M) is “really hard”
– Computing Ek(M) and Dk(C) is efficient

encryption decryptionplaintext (M) ciphertext (C) M

encryption key (k1) decryption key (k2)



03/15/09  11

• Encrypt passwords with passwords

• David’s password, “allison,” is encrypted using itself 
as the key and stored in that form.

• Password supplied by user is encrypted with itself as 
key, and result compared to stored result.

• “No problem if someone steals the file”
• Also no need to secure a key

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[alison]allison

Unix Password File



03/15/09  12

Windows Passwords

• NTLM – run user name and password through 
“secure hash”: SHA4, MD4/5 to map to 128-bit 
“digest”. “Cryptographically secure”

• Store user name and digest.
• Lose the password file, no problem

– Uh, er, with large enough input buffer algorithms exist to 
create a fake password that has same hash. Solution: limit 
input buffer size. Sorta ok…



03/15/09  13

The Dictionary Attack
• Encrypt many (all) possible password strings offline, and store 

results in a dictionary
– I may not be able to invert any particular password, but the odds 

are very high I can invert one or more

• 26 letters used, 7 letters long
– 8 billion passwords (33 bits)
– Generating 100,000/second requires 22 hours

• But most people’s passwords are not random sequences of 
letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name/words in the dictionary

• Dictionary attacks have traditionally been incredibly easy



03/15/09  14

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long 
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.
– Avoid algorithmic passwords or recycling from long list

• Microsoft retains last 18 passwords. Sorta stops 
“ThisIsMy1stPassword”, “ThisIsMy2ndPassword”…



03/15/09  15

Do longer passwords work?

• People can’t remember 14-character strings of 
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password 

periodically, you probably choose an even dumber 
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?



03/15/09  16

Attack Models

• Besides the problems already mentioned that 
obviously remain (people give out their passwords / 
write them down / key loggers / …), there may be 
other clever attacks that we haven’t thought of

• Attack Model: when reasoning about the security of a 
mechanism, we typically need to carefully describe 
what kinds of attacks we’re thinking of
– helps us reason about what vulnerabilities still remain



03/15/09  17

Example 1:  Login spoofers

• Login spoofers are a specialized class of Trojan 
horses
– Attacker runs a program that presents a screen identical to 

the login screen and walks away from the machine
– Victim types password and gets a message saying 

“password incorrect, try again”

• Can be circumvented by requiring an operation that 
unprivileged programs cannot perform
– E.g., start login sequence with a key combination user 

programs cannot catch, CTRL+ALT+DEL on Windows

• False fronts have been used repeatedly to steal bank 
ATM passwords!



03/15/09  18

Example 2:  Page faults as a signal

• VMS (early 80’s) password checking flaw

– password checking algorithm:
for (I=0; I<password.length( ); I++) {

if password[I] == supplied_password[I]
return false;

}
return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint:  think about page faults…
• final hint:  who controls where in memory supplied_password 

lives?



03/15/09  19

Distributed Authentication (Single Domain)



03/15/09  20

Kerberos

Alice

A, Request for TGT

{A, SK

AS

,  {TGT}KTGS}KasNa,“A”,”B”, {TGT}KTGS

{Na, B, Kab, {Kab, A}Kbs}SK

AS

{Kab, A}Kbs

{Data}Kab

Ticket Granting
Service

Authentication 
Server

Client
Key DB

Print Server (B)
At this point Alice and the server

have a shared secret



03/15/09  21

Trust Relationships
• Both Alice and the server must trust the Kerberos servers (“trusted third 

party”)

• This architecture is essentially what Microsoft passport is:



03/15/09  22

Distributed Authentication at World Scale

• Bill Gates wants to login to his Citibank account to 
move $10 from savings to checking

• Both Bill and Citibank are worried:
– Citibank:

• How do I know that I’m talking with Bill?
• Does Bill have $10 in his savings account?
• …

– Bill:
• How do I know that I’m talking with Citibank?



03/15/09  23

Man in the Middle Attack

www.citibank.com
www.yegg.org

⇐ Get login page
⇒ Login page. Password?
⇐ Here’s my password



03/15/09  24

Authentication Solutions

• Citibank authenticating Bill
– This is just a client accessing a server.  Citibank can use 

shared secrets.
• Bill has to use some secret communicated out-of-band (e.g., 

ATM PIN number) to create a shared secret for online access.

• Bill authenticating Citibank
– Could shared secret work for the bank to authenticate itself 

to the client?
• …

– In the end, we rely on a trusted third party (just like 
Kerberos, but implemented differently)



03/15/09  25

Why not this?

Citibank Client

Bill, {N,Login}KBill

{N, KS, Password?}KCiti

{N, Password}KS



03/15/09  26

Public Key Encryption

• Key pairs, KPublic / KPrivate
– {{M}KPublic}KPrivate = {{M}KPrivate}KPublic = M

• Each key is the decryption key for the other used as an 
encryption key

– It is computationally infeasible to deduce KPrivate from 
KPublic

• You can distribute KPublic freely

• {M}KPublic can be decrypted only by the holder of the 
private key

• {M}KPrivate can be created only by the holder of the 
private key
– “Signing”



03/15/09  27

Authentication by Certificate: Basic Idea

Trusted
Third
Party

Citibank Client

Documents

Digital Certificate
w/ KCitiPublic

Get login

Password?

Password

• Much more is need for this to actually work
• E.g., what keeps yegg.com from copying

the certificate?

• Why not have the client contact the TTP directly to
obtain the certificate at the outset?

• Why might you “want” to contact the TTP in any case?
KTTPPublic

TTP ⇔ KTTPPublic



03/15/09  28

Client/Server Communication: ssl (tls)

Citibank Client

Hello, NClient

Hello, NServer

{Pre-master}KServerPublic

TTP ⇔ KTTPPublic

Notes:
1. Master/session key determined independently

by both client and server as:
              F(Nclient, Nserver, Pre-master)

2. I’ve taken some liberties to simplify the explanation…
(cf. CSE 461)

{Finished}KSession



03/15/09  29

The Larger Security Problem

• Integrity
My data should be protected against modification by 
malicious parties
– “Modification” includes deletion

• Privacy
My data should not be disclosed without my consent

• Both issues have become much more complicated in 
the last decade
– Attackers exploit bugs/weaknesses accessible through the 

net
– We all run third-party code



03/15/09  30

Spyware

• Software that is installed that collects information and 
reports it to third party
– key logger, adware, browser hijacker, …

• Installed one of two ways
– piggybacked on software you choose to download
– “drive-by” download

• your web browser has vulnerabilities
• web server can exploit by sending you bad web content

• Estimates
– majority (50-90%) of Internet-connected PCs have it
– 1 in 20 executables on the Web have it
– about 0.5% of Web pages attack you with drive-by-

downloads



03/15/09  31

kingsofchaos.com

• A benign web site for an online game
– earns revenue from ad networks by showing banners
– but, it relinquishes control of the ad content

banner ad from
adworldnetwork.com

(a legitimate ad network)

inline javascript loads
HTML from ad provider 



03/15/09  32

Incident
• kingsofchaos.com was given this “ad content”

<script type="text/javascript">document.write(‘ \u003c\u0062\
u006f\u0064\u0079\u0020\u006f\u006e\u0055\u006f\u0077\u0050\u
006f\u0070\u0075\u0070\u0028\u0029\u003b\u0073\u0068\u006f\u0
077\u0048\u0069 …etc.

• This “ad” ultimately:
– bombarded the user with pop-up ads
– hijacked the user’s homepage
– exploited an IE vulnerability to install spyware



03/15/09  33

What’s going on?
• The advertiser was an ex-email-spammer

• His goal:
– force users to see ads from his servers
– draw revenue from ad “affiliate programs”

• Apparently earned several millions of dollars

• Why did he use spyware?
– control PC and show ads even when not on the Web



03/15/09  34

Principle of Least Privilege

• Figure out exactly which capabilities a program needs 
to run, and grant it only those
– start out by granting none

• run program, and see where it breaks
• add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need root just to get a small privilege

• e.g., FTP daemon requires root:
– to listen on network port < 1024
– to change between user identities after authentication

• but root also lets you read any file in filesystem



03/15/09  35

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has changed…
and there is a lot that’s relevant!

• A TLB caches access control information
– page table entry protection bits
– is this a violation of the principle?



03/15/09  36

Modern security problems
• Confinement

– How do I run code that I don’t trust?
• e.g., RealPlayer, Flash

– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• e.g., Internet Explorer 

• Solutions
– Restricted contexts – let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting – modify the program to force it to be safe



03/15/09  37

Restricted contexts

• Role-based access control (RBAC)
– Add extra identity information to a process

• e.g., both username and program name (mikesw:navigator)
– Use both identities for access checks

• add extra security checks at system calls that use program 
name

• add extra ACLs on objects that grant/deny access to the 
program

– Allows users to sub-class themselves for less-trusted 
programs

• chroot

• Browse in a VMWare machine



03/15/09  38

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this



03/15/09  39

Java / C#
• All problems are solved by a layer of indirection

– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models  - allows stack walking

• Interposition using language VM doesn’t work for other 
languages

• Virtual machines can be used with all languages
– Run virtual machine for hardware
– Inspect stack to determine subject for access checks



03/15/09  40

Binary rewriting

• Goal: enforce code safety by embedding checks in 
the code

• Solution: 
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw   $a0, 14($s4)
jal  ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw   $a0, 14($t6)
and  $t6,$s5, 0x001fff0
jal  ($t6)
move $a0, $v0
jal $sfi_printf


	CSE 451: Operating Systems  Winter 2009   Module 17  Authentication / Authorization / Security
	Terminology I:  the entities
	Terminology II:  the activities
	Authentication
	Local Login
	Shared Secret
	Simple Enough
	Storing passwords
	Two Choices
	Aside on Encryption
	Unix Password File
	Windows Passwords
	The Dictionary Attack
	Making it harder
	Do longer passwords work?
	Attack Models
	Example 1:  Login spoofers
	Example 2:  Page faults as a signal
	Distributed Authentication (Single Domain)
	Kerberos
	Trust Relationships
	Distributed Authentication at World Scale
	Man in the Middle Attack
	Authentication Solutions
	Why not this?
	Public Key Encryption
	Authentication by Certificate: Basic Idea
	Client/Server Communication: ssl (tls)
	The Larger Security Problem
	Spyware
	kingsofchaos.com
	Incident
	What’s going on?
	Principle of Least Privilege
	Principle of Complete Mediation
	Modern security problems
	Restricted contexts
	ActiveX
	Java / C#
	Binary rewriting

