
CSE 451: Operating Systems
Winter 2009

Module 16
Linking, Loading and Process

Startup

Mark Zbikowski

Gary Kimura

03/15/09 2

So you want to run a program..

• How was it created?
– Someone wrote some C/C#/C++/etc
– Compile/fix-errors/compile again
– Get object files

• What’s in the .o or .obj files?
– Code and data and fixups
– Code and data are easy
– Fixups describe relationships

• Targets of jumps/calls
• Data references

– What do you do about references to other (extern)
code/data?

• Fixups too!

03/15/09 3

More of what’s in .o / .obj files

• Old style format (reflecting stream view of files)
– Stream of records <tag><data> where <tag> was

• DATA: <data section> was constant data
• BSS: <data section> was just the size of the BSS reserved
• CODE: just like DATA
• FIXUP: applies to previous record, may list a name (external) or

an offset into some other prior record and describe a width (8,
16, 32, 64) and an operation (ADD, IMM, SELF-REL)

• Modern format (take advantage of memory mapping)
– Header on file describes sections suitable for mmap()

03/15/09 4

What’s a section?

• Section is a piece of contiguous memory
– Named
– Protected: read only, read/write, execute, read/execute, etc.
– Location in file
– Location in memory

• Some names are important
– DATA
– CODE
– BSS
– DEBUG
– FIXUP

03/15/09 5

Putting .o/.obj files together

• The “linker”
– take a collection of object files and produce an executable

image
– Gathers and appends like named/protected sections
– Evaluates fixups and establishes addressing (linkages)

between sections
– Emits special sections

• DEBUG
• IMPORT
• EXPORT

– All into a file with the same general format as .o/.obj files
• A few new sections
• But it’s header says it’s executable
• Called the image file

03/15/09 6

Executing the image file

• What does exec() or CreateProcess() do?
– Easy stuff:

• Allocate PCB
• Create address space

– Harder stuff
• Create first thread
• Copy handle environment from parent

– The meat:
• Opens image file
• Memory maps header (reading section table)
• For each section:

– Memory map the appropriate portion of the file
– Into the correct address space location
– With correct memory protection

03/15/09 7

Is that all?

• Once upon a time, yes
– All code was in one file
– Included all special stuff for calling the OS

• Not nearly useful enough
– What if system call #’s changed?
– What about sharing common code between apps?
– What about 3rd party code?
– What about extensibility?

03/15/09 8

Dynamic libraries

• Goal: break down single images into multiple pieces
– Independently distributable
– Breakdown based on functionality / extensibility

• Implications on image format
– Need a way to reference between image files
– Add IMPORT and EXPORT sections
– IMPORT lists all functions required by the image file

(executable or library)
– EXPORT lists all functions offered by the image file

• Big implications on process creation

03/15/09 9

Process Creation with libraries

• Easy/Harder stuff still the same
• Hardest stuff:

– No longer loading just a single file, loading multiple modules
– Walking each IMPORT table, finding references to modules

not yet loaded and loading them
– Big graph traversal
– How are linkages established between modules?

03/15/09 10

Module Linkage

• Naïve approach is to use something similar to fixups
– Modify the sections to establish linkage
– Modifies the memory mapped pages

• Don’t want to modify the original file
• Copy-on-write
• Bigger page file
• More dirty pages in memory

• Work with compiler
– Observe that inter-module references are always direct

(never self-relative). Call or pointer reference
– Keywords in language (or header files) that change direct

calls into indirect calls and direct addressing into indirect
addressing.

03/15/09 11

Efficient Linkage

• Foo(args) turns into (*import_Foo)(args)
• Gather all import_X addresses into a single section

– Called IAT (import address table)
– Usually only a single page in size, not inefficient to dirty
– Still have to do some big work

• Can we do better?

03/15/09 12

Binding

• Floating modules
– No known address
– IAT required to handling differing locations based on other

modules’ locations
• Bind modules to specific locations

– Section table describes location, mapping is trivial
– IAT can be pre-built with locations already in mind
– Zero program-startup fixups

• What’s the issue?

03/15/09 13

Binding

• What address do you assign?
– 32 bit address space seems large enough
– XP has >1200 modules.

• What if there’s a collision?
– New release of module grows in size (bug fixes,

functionality)
– Modules produced by two independent companies
– Loader needs to be robust in the face of this
– Choose another location
– Fix up IAT (small number of pages)

03/15/09 14

A few cheats

• Compiler needs to generate self-relative instructions
– Otherwise relocation of module would require fixups
– Works well on x86…
– Most of XP’s DLL’s can be broken into disjoint groups and

addresses assigned to each

03/15/09 15

Vista cool feature

• “dynamic rebasing”
– At install time, all modules are rebased randomly in memory
– Just edit the IATs, still have speedy program start
– What problem would this solve?

• Buffer overflow attacks
– Operate by overflowing a stack buffer and overwriting a

return address
– Knowing where special code might be would allow attacker

to hijack return to code in a module not directly referenced
– Not if the module moves…

03/15/09 16

Windows CreateProcess

• Different from fork/exec.
– Fork/exec are in kernel mode and embody the entire

process creation experience
– Windows Kernel has

• NtCreateProcess – creates a new process address space. BUT
NO THREAD

• NtCreateThread – creates a new thread in a given process
• NtSetThreadInformation – sets execution context for thread

(notably stack and PC)

03/15/09 17

Windows CreateProcess

• CreateProcess is user code in kernel32 module
– Creates process (NtCreateProcess)
– Maps in kernel call DLL (ntdll)
– Maps in image (but no libraries)
– Creates initial thread
– Sets thread to initialization routine in ntdll

(LdrpInitializeProcess)
– Go!

• LdrpInitializeProcess does all the memory mapping
work
– Executing in the new image’s context
– Walking module lists is just memory access
– Makes NtCreateSection calls

03/15/09 18

Why not do what unix did?

• Extensibility
– Differing loader policies (OS/2, DOS)
– New loader implementations
– Smaller kernel

• Simpler loader code

	CSE 451: Operating Systems Winter 2009 Module 16 Linking, Loading and Process Startup
	So you want to run a program..
	More of what’s in .o / .obj files
	What’s a section?
	Putting .o/.obj files together
	Executing the image file
	Is that all?
	Dynamic libraries
	Process Creation with libraries
	Module Linkage
	Efficient Linkage
	Binding
	Slide 13
	A few cheats
	Vista cool feature
	Windows CreateProcess
	Slide 17
	Why not do what unix did?

