CSE 451: Operating Systems
Winter 2009

Module 16
Linking, Loading and Process
Startup

Mark Zbikowski

Gary Kimura

So you want to run a program..

* How was it created?
— Someone wrote some C/C#/C++/etc
— Compile/fix-errors/compile again
— Get object files

* What's in the .0 or .obj files?
— Code and data and fixups
— Code and data are easy

— Fixups describe relationships
* Targets of jumps/calls
* Data references

— What do you do about references to other (extern)
code/data?

* Fixups too!

03/15/09

More of what's in .0 / .obj files

* Old style format (reflecting stream view of files)

— Stream of records <tag><data> where <tag> was
* DATA: <data section> was constant data
* BSS: <data section> was just the size of the BSS reserved
* CODE: just like DATA

* FIXUP: applies to previous record, may list a name (external) or
an offset into some other prior record and describe a width (8,
16, 32, 64) and an operation (ADD, IMM, SELF-REL)

* Modern format (take advantage of memory mapping)
— Header on file describes sections suitable for mmap()

03/15/09 3

What's a section?

* Section is a piece of contiguous memory
— Named
— Protected: read only, read/write, execute, read/execute, etc.
— Location in file
— Location in memory

* Some names are important
— DATA
— CODE
— BSS
— DEBUG
— FIXUP

03/15/09

Putting .o/.obj files together

* The “linker”

— take a collection of object files and produce an executable
image
— Gathers and appends like named/protected sections
— Evaluates fixups and establishes addressing (linkages)
between sections
— Emits special sections
* DEBUG

* IMPORT
 EXPORT

— All into a file with the same general format as .o/.0bj files
* A few new sections
* Butit's header says it's executable
* Called the image file

03/15/09

Executing the image file

* What does exec() or CreateProcess() do?

— Easy stuff:
* Allocate PCB
* Create address space

— Harder stuff
* Create first thread
* Copy handle environment from parent

— The meat:
* Opens image file
* Memory maps header (reading section table)

* For each section:
— Memory map the appropriate portion of the file
— Into the correct address space location
— With correct memory protection

03/15/09

Is that all?

* Once upon a time, yes
— All code was in one file
— Included all special stuff for calling the OS

* Not nearly useful enough
— What if system call #'s changed?
— What about sharing common code between apps?

— What about 3" party code?
— What about extensibility?

03/15/09

Dynamic libraries

* (Goal: break down single images into multiple pieces
— Independently distributable
— Breakdown based on functionality / extensibility

* Implications on image format

— Need a way to reference between image files
— Add IMPORT and EXPORT sections

— IMPORT lists all functions required by the image file
(executable or library)

— EXPORT lists all functions offered by the image file
* Big implications on process creation

03/15/09

Process Creation with libraries

* Easy/Harder stuff still the same
* Hardest stuff:

— No longer loading just a single file, loading multiple modules

— Walking each IMPORT table, finding references to modules
not yet loaded and loading them

— Big graph traversal
— How are linkages established between modules?

03/15/09

Module Linkage

* Naive approach is to use something similar to fixups
— Modify the sections to establish linkage
— Modifies the memory mapped pages
* Don’t want to modify the original file
* Copy-on-write
* Bigger page file
* More dirty pages in memory
* Work with compiler

— Observe that inter-module references are always direct
(never self-relative). Call or pointer reference

— Keywords in language (or header files) that change direct
calls into indirect calls and direct addressing into indirect
addressing.

03/15/09 10

Efficient Linkage

* Foo(args) turns into (*import_Foo)(args)

* Gather all import_X addresses into a single section
— Called IAT (import address table)
— Usually only a single page in size, not inefficient to dirty
— Still have to do some big work

* Can we do better?

03/15/09

11

Binding

* Floating modules
— No known address

— |AT required to handling differing locations based on other
modules’ locations

* Bind modules to specific locations
— Section table describes location, mapping is trivial
— IAT can be pre-built with locations already in mind
— Zero program-startup fixups

* What’s the issue?

03/15/09

12

Binding

* What address do you assign?

32 bit address space seems large enough
XP has >1200 modules.

* What if there’s a collision?

03/15/09

New release of module grows in size (bug fixes,
functionality)

Modules produced by two independent companies
Loader needs to be robust in the face of this
Choose another location

Fix up IAT (small number of pages)

13

A few cheats

* Compiler needs to generate self-relative instructions
— Otherwise relocation of module would require fixups
— Works well on x86...

— Most of XP’s DLL'’s can be broken into disjoint groups and
addresses assigned to each

03/15/09

14

Vista cool feature

* “dynamic rebasing”
— Atinstall time, all modules are rebased randomly in memory
— Just edit the |IATSs, still have speedy program start
— What problem would this solve?

* Buffer overflow attacks

— Operate by overflowing a stack buffer and overwriting a
return address

— Knowing where special code might be would allow attacker
to hijack return to code in a module not directly referenced

— Not if the module moves...

03/15/09 15

Windows CreateProcess

* Different from fork/exec.

Fork/exec are in kernel mode and embody the entire
process creation experience

— Windows Kernel has

03/15/09

* NtCreateProcess — creates a new process address space. BUT
NO THREAD

* NtCreateThread — creates a new thread in a given process

* NtSetThreadlnformation — sets execution context for thread
(notably stack and PC)

16

Windows CreateProcess

* CreateProcess is user code in kernel32 module
— Creates process (NtCreateProcess)
— Maps in kernel call DLL (ntdll)
— Maps in image (but no libraries)
— Creates initial thread

— Sets thread to initialization routine in ntdll
(LdrplnitializeProcess)

— Go!
* LdrplnitializeProcess does all the memory mapping
work
— Executing in the new image’s context
— Walking module lists is just memory access
— Makes NtCreateSection calls

03/15/09 17

Why not do what unix did”?

* Extensibility
— Differing loader policies (0S/2, DOS)
— New loader implementations
— Smaller kernel

* Simpler loader code

03/15/09

18

	CSE 451: Operating Systems Winter 2009 Module 16 Linking, Loading and Process Startup
	So you want to run a program..
	More of what’s in .o / .obj files
	What’s a section?
	Putting .o/.obj files together
	Executing the image file
	Is that all?
	Dynamic libraries
	Process Creation with libraries
	Module Linkage
	Efficient Linkage
	Binding
	Slide 13
	A few cheats
	Vista cool feature
	Windows CreateProcess
	Slide 17
	Why not do what unix did?

