
CSE 451: 
Operating 
Systems

Winter 2009

Module 14
File Systems

Mark 
Zbikowski

Gary 
Kimura



02/26/09  2

File systems

• The concept of a file system is simple
– the implementation of the abstraction for secondary storage

• abstraction = files
– logical organization of files into directories

• the directory hierarchy
– sharing of data between processes, people and machines

• access control, consistency, …



02/26/09  3

Files

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link
– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …
• Type can be encoded in the file’s name or contents

– windows encodes type in name (and contents)
• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

– old Mac OS stored the name of the creating program along 
with the file

– unix does both as well
• in content via magic numbers or initial characters (e.g., #!)



02/26/09  4

Basic operations

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix
• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)



02/26/09  5

File access methods

• Some file systems provide different access methods 
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order
– direct access

• random access given a block/byte #
– record access

• file is array of fixed- or variable-sized records
– indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from 
direct access?
– what might the FS do differently in these cases?



02/26/09  6

Directories

• Directories provide:
– a way for users to organize their files
– a convenient file name space for both users and FS’s

• Most file systems support multi-level directories
– naming hierarchies (c:\, c:\DocumentsAndSettings, 

c:\DocumentsAndSettings\MarkZ, …)
• Most file systems support the notion of current 

directory
– absolute names: fully-qualified starting from root of FS

C:\> cd c:\Windows\System32
– relative names: specified with respect to current directory

C:\> c:\Windows\System32 (absolute)
C:\Windows\System32> cd Drivers         

(relative, equivalent to cd c:\Windows\System32\Drivers)



02/26/09  7

Directory internals

• A directory is typically just a file that happens to 
contain special metadata
– directory = list of (name of file, file attributes)
– attributes include such things as:

• size, protection, location on disk, creation time, access time, …
– the directory list can be unordered (effectively random)

• when you type “ls” or “dir /on” , the command sorts the results 
for you.

• some file systems organize the directory file as a BTree, giving 
a “natural” ordering

– What case to use for sort?
– What about international issues?



02/26/09  8

Path name translation

• Let’s say you want to open “C:\one\two\three”
success = CreateFile(“c:\\one\\two\\three”, …);

• What goes on inside the file system?
– open directory “c:\”  (well known, can always find)
– search the directory for “one”, get location of “one”
– open directory “one”, search for “two”, get location of “two”
– open directory “two”, search for “three”, get loc. of “three”
– open file “three”
– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is one reason why open is separate from read/write (session 

state)
– FS will cache prefix lookups to enhance performance

• C:\Windows, C:\Windows\System32, C:\Windows\System32\Drivers all 
share the “C:\Windows” prefix



02/26/09  9

File protection

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or delete)

• More generally (wait until security/protection lecture):
– generalize files to objects  (the “what”)
– generalize users to principals  (the “who”, user or program)
– generalize read/write to actions  (the “how”, or operations)

• A protection system dictates whether a given action 
performed by a given principal on a given object 
should be allowed
– e.g., you can read or write your files, but others cannot
– e.g., your can read  C:\Windows\System32\ntoskrnl.exe  

but you cannot write to it



02/26/09  10

Model for representing protection

• Two different ways of thinking about it:
– access control lists (ACLs)

• for each object, keep list of principals and principals’ allowed 
actions

– capabilities
• for each principal, keep list of objects and principal’s allowed 

actions
• Both can be represented with the following matrix:

C:\boot.ini C:\DocumentsAndSettings/
Markz/desktop

Administrator rw rw

markz r rw

guest

principals

objects

ACL

capability



02/26/09  11

ACLs vs. Capabilities

• Capabilities are easy to transfer
– they are like keys: can hand them off
– they make sharing easy

• ACLs are easier to manage
– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of principals that have it
• hard to do, given that principals can hand off capabilities

• ACLs grow large when object is heavily shared
– can simplify by using “groups”

• put users in groups, put groups in ACLs
– additional benefit

• change group membership, affects ALL objects that have this 
group in its ACL



02/26/09  12

The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
timesharing operating system” – Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

– Although it has been stretched in many directions and made 
ugly in the process

• A wonderful study in engineering tradeoffs



02/26/09  13

All disks are divided into five parts …

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks
• i-node area

– contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblock

• File contents area
– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of memory



02/26/09  14

So …

• You can attach a disk to a dead system …
• Boot it up …
• Find, create, and modify files …

– because the superblock is at a fixed place, and it tells you 
where the i-node area and file contents area are

– by convention, the second i-node is the root directory of the 
volume



02/26/09  15

The flat (i-node) file system

• Each file is known by a number, which is the number 
of the i-node
– seriously – 1, 2, 3, etc.!
– why is it called “flat”?

• Files are created empty, and grow when extended 
through writes



02/26/09  16

The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
• Each entry consists of an i-node number and a file 

name 
i-node number File name

152 .
18 ..
216 my_file

4 another_file
93 oh_my_god
144 a_directory

• It’s as simple as that!



02/26/09  17

The “block list” portion of the i-node (Unix Version 7)

• Points to blocks in the file contents area
• Must be able to represent very small and very large files.  

How?
• Each inode contains 13 block pointers

– first 10 are “direct pointers” (pointers to 512B blocks of file data)
– then, single, double, and triple indirect pointers

0
1

10
11
12

…

…

…

…

…

… …



02/26/09  18

File system consistency

• Both i-nodes and file blocks are cached in memory
• The “sync” command forces memory-resident disk 

information to be written to disk
– system does a sync every few seconds

• A crash or power failure between sync’s can leave an 
inconsistent disk

• You could reduce the frequency of problems by 
reducing caching, but performance would suffer big-
time



02/26/09  19

Consistency of the Flat file system

• Is each block accounted for?
– Belongs to precisely one file or is on free list
– What to do if in multiple files?

• Mark-and-sweep garbage collection
– Start with bitmap (one bit per block) of zeros
– For every inode, walk allocation tree setting bits
– Walk free list setting bits
– Bits that are one along the way?
– Bits that are zero at the end?



02/26/09  20

Consistency of the directory structure

• Verify that directories form a tree
• Start with vector of counters, one per inode, set to 

zero
• Perform tree walk of directories, adjusting counters 

on every name reference
• At end, counters must equal link count



02/26/09  21

Protection

• Objects:  individual files
• Principals:  owner/groups/everyone
• Actions:  read/write/execute

• This is pretty simple and rigid, but it has proven to be 
about what we can handle!


	CSE 451: Operating Systems Winter 2009  Module 14 File Systems
	File systems
	Files
	Basic operations
	File access methods
	Directories
	Directory internals
	Path name translation
	File protection
	Model for representing protection
	ACLs vs. Capabilities
	The original Unix file system
	All disks are divided into five parts …
	So …
	The flat (i-node) file system
	The tree (directory, hierarchical) file system
	The “block list” portion of the i-node (Unix Version 7)
	File system consistency
	Consistency of the Flat file system
	Consistency of the directory structure
	Protection

