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File systems

• The concept of a file system is simple
– the implementation of the abstraction for secondary storage

• abstraction = files
– logical organization of files into directories

• the directory hierarchy
– sharing of data between processes, people and machines

• access control, consistency, …
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Files

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link
– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …
• Type can be encoded in the file’s name or contents

– windows encodes type in name (and contents)
• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

– old Mac OS stored the name of the creating program along 
with the file

– unix does both as well
• in content via magic numbers or initial characters (e.g., #!)
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Basic operations

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix
• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)
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File access methods

• Some file systems provide different access methods 
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order
– direct access

• random access given a block/byte #
– record access

• file is array of fixed- or variable-sized records
– indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from 
direct access?
– what might the FS do differently in these cases?
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Directories

• Directories provide:
– a way for users to organize their files
– a convenient file name space for both users and FS’s

• Most file systems support multi-level directories
– naming hierarchies (c:\, c:\DocumentsAndSettings, 

c:\DocumentsAndSettings\MarkZ, …)
• Most file systems support the notion of current 

directory
– absolute names: fully-qualified starting from root of FS

C:\> cd c:\Windows\System32
– relative names: specified with respect to current directory

C:\> c:\Windows\System32 (absolute)
C:\Windows\System32> cd Drivers         

(relative, equivalent to cd c:\Windows\System32\Drivers)
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Directory internals

• A directory is typically just a file that happens to 
contain special metadata
– directory = list of (name of file, file attributes)
– attributes include such things as:

• size, protection, location on disk, creation time, access time, …
– the directory list can be unordered (effectively random)

• when you type “ls” or “dir /on” , the command sorts the results 
for you.

• some file systems organize the directory file as a BTree, giving 
a “natural” ordering

– What case to use for sort?
– What about international issues?
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Path name translation

• Let’s say you want to open “C:\one\two\three”
success = CreateFile(“c:\\one\\two\\three”, …);

• What goes on inside the file system?
– open directory “c:\”  (well known, can always find)
– search the directory for “one”, get location of “one”
– open directory “one”, search for “two”, get location of “two”
– open directory “two”, search for “three”, get loc. of “three”
– open file “three”
– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is one reason why open is separate from read/write (session 

state)
– FS will cache prefix lookups to enhance performance

• C:\Windows, C:\Windows\System32, C:\Windows\System32\Drivers all 
share the “C:\Windows” prefix
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File protection

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or delete)

• More generally (wait until security/protection lecture):
– generalize files to objects  (the “what”)
– generalize users to principals  (the “who”, user or program)
– generalize read/write to actions  (the “how”, or operations)

• A protection system dictates whether a given action 
performed by a given principal on a given object 
should be allowed
– e.g., you can read or write your files, but others cannot
– e.g., your can read  C:\Windows\System32\ntoskrnl.exe  

but you cannot write to it
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Model for representing protection

• Two different ways of thinking about it:
– access control lists (ACLs)

• for each object, keep list of principals and principals’ allowed 
actions

– capabilities
• for each principal, keep list of objects and principal’s allowed 

actions
• Both can be represented with the following matrix:

C:\boot.ini C:\DocumentsAndSettings/
Markz/desktop

Administrator rw rw

markz r rw

guest

principals

objects

ACL

capability
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ACLs vs. Capabilities

• Capabilities are easy to transfer
– they are like keys: can hand them off
– they make sharing easy

• ACLs are easier to manage
– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of principals that have it
• hard to do, given that principals can hand off capabilities

• ACLs grow large when object is heavily shared
– can simplify by using “groups”

• put users in groups, put groups in ACLs
– additional benefit

• change group membership, affects ALL objects that have this 
group in its ACL
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The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
timesharing operating system” – Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

– Although it has been stretched in many directions and made 
ugly in the process

• A wonderful study in engineering tradeoffs
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All disks are divided into five parts …

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks
• i-node area

– contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblock

• File contents area
– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of memory
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So …

• You can attach a disk to a dead system …
• Boot it up …
• Find, create, and modify files …

– because the superblock is at a fixed place, and it tells you 
where the i-node area and file contents area are

– by convention, the second i-node is the root directory of the 
volume
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The flat (i-node) file system

• Each file is known by a number, which is the number 
of the i-node
– seriously – 1, 2, 3, etc.!
– why is it called “flat”?

• Files are created empty, and grow when extended 
through writes
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The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
• Each entry consists of an i-node number and a file 

name 
i-node number File name

152 .
18 ..
216 my_file

4 another_file
93 oh_my_god
144 a_directory

• It’s as simple as that!
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The “block list” portion of the i-node (Unix Version 7)

• Points to blocks in the file contents area
• Must be able to represent very small and very large files.  

How?
• Each inode contains 13 block pointers

– first 10 are “direct pointers” (pointers to 512B blocks of file data)
– then, single, double, and triple indirect pointers

0
1

10
11
12

…

…

…

…

…

… …
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File system consistency

• Both i-nodes and file blocks are cached in memory
• The “sync” command forces memory-resident disk 

information to be written to disk
– system does a sync every few seconds

• A crash or power failure between sync’s can leave an 
inconsistent disk

• You could reduce the frequency of problems by 
reducing caching, but performance would suffer big-
time
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Consistency of the Flat file system

• Is each block accounted for?
– Belongs to precisely one file or is on free list
– What to do if in multiple files?

• Mark-and-sweep garbage collection
– Start with bitmap (one bit per block) of zeros
– For every inode, walk allocation tree setting bits
– Walk free list setting bits
– Bits that are one along the way?
– Bits that are zero at the end?
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Consistency of the directory structure

• Verify that directories form a tree
• Start with vector of counters, one per inode, set to 

zero
• Perform tree walk of directories, adjusting counters 

on every name reference
• At end, counters must equal link count
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Protection

• Objects:  individual files
• Principals:  owner/groups/everyone
• Actions:  read/write/execute

• This is pretty simple and rigid, but it has proven to be 
about what we can handle!
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