
CSE 451:
Operating
Systems

 Winter 2009

Module 11a
Page Table

Management,
TLBs,

and Other
Pragmatics

Mark
Zbikowski

Gary
Kimura

02/19/09 2

Address translation and page faults
(refresher!)

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

What mechanism
causes a page fault

to occur?

Recall how address
translation works

02/19/09 3

How does OS handle a page fault?

• Interrupt causes system to be entered
• System saves state of running process, then vectors to

page fault handler routine
– find or create (through eviction) a page frame into which to load

the needed page (1)
• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame
(2)

• run some other process while the I/O is going on
– fix up the page table entry

• mark it as “valid,” set “referenced” and “modified” bits to false, set
protection bits appropriately, point to correct page frame

– put the process on the ready queue

02/19/09 4

• (2) Find the needed page on disk and bring it into the
page frame
– processor makes process ID and faulting virtual address

available to page fault handler
– process ID gets you to the base of the page table
– VPN portion of VA gets you to the PTE
– data structure analogous to page table (an array with an

entry for each page in the address space) contains disk
address of page

– at this point, it’s just a simple matter of I/O
• must be positive that the target page frame remains available!

– or what?

02/19/09 5

• (1) Find or create (through eviction) a page frame into
which to load the needed page
– run page replacement algorithm

• free page frame
• assigned but unmodified (“clean”) page frame
• assigned and modified (“dirty”) page frame

– assigned but “clean”
• find PTE (may be a different process!)
• mark as invalid (disk address must be available for subsequent

reload)
– assigned and “dirty”

• find PTE (may be a different process!)
• mark as invalid
• write it out

02/19/09 6

“Issues”

• Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table

lookups
• translation lookaside buffer (TLB)

• Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space
– 32 bit address with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– 48 bit address, same assumptions, 64GB per page table!
– solution: page the page tables!

• (ow, my brain hurts …)

02/19/09 7

Paging the page tables 1

• Simplest notion:
– put user page tables in a pageable segment of the system’s

address space
– wire down the system’s page table(s) in physical memory
– allow the system segment containing the user page tables to

be paged
• a reference to a non-resident portion of a user page table is a

page fault in the system address space
• the system’s page table is wired down

– “no smoke and mirrors”

• As a practical matter, this simple notion doesn’t cut
the mustard today
– although it is exactly what VAX/VMS did!

• But it’s a useful model for what’s actually done

02/19/09 8

Paging the page tables 2

• How can we reduce the physical memory
requirements of page tables?
– observation: only need to map the portion of the address

space that is actually being used (often a tiny fraction of the
total address space)

• a process may not use its full 32/48/64-bit address space
• a process may have unused “holes” in its address space
• a process may not reference some parts of its address space

for extended periods
– all problems in CS can be solved with a level of indirection!

• two-level (three-level, four-level) page tables

02/19/09 9

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset and PFN yield physical address

02/19/09 10

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

02/19/09 11

• Example:
– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?
– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page
– 4KB/4 bytes = 1024 PTEs
– thus master page # is 10 bits (210=1K)
– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary
page table

– hence, each secondary page table has 1024 PTEs and fits in one
page

02/19/09 12

Generalizing

• Early architectures used 1-level page tables
• VAX, X86 used 2-level page tables
• SPARC uses 3-level page tables
• 68030 uses 4-level page tables
• Key thing is that the outer level must be wired down

(pinned in physical memory) in order to break the
recursion – no smoke and mirrors

02/19/09 13

Alternatives

• Hashed page table (great for sparse address spaces)
– VPN is used as a hash
– collisions are resolved because the elements in the linked

list at the hash index include the VPN as well as the PFN
• Inverted page table (really reduces space!)

– one entry per page frame
– includes process id, VPN
– hell to search! (but IBM PC/RT actually did this!)

02/19/09 14

Making it all efficient

• Original page table scheme doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)

02/19/09 15

TLBs

• Translation lookaside buffer
– translates virtual page #s into PTEs (page frame numbers)

(not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs (page frame numbers)
– with PTE + offset, MMU can directly calculate the PA
– X86 has 128 entries, MIPS 48, PowerPC 64

• TLBs exploit locality
– processes only use a handful of pages at a time

• can hold the “hot set” or “working set” of a process
– hit rates in the TLB are therefore really important

02/19/09 16

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, translation is placed into the TLB

• Hardware (memory management unit (MMU))
– knows where page tables are in memory

• OS maintains them, HW access them directly
– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format

02/19/09 17

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB
• What happens on a process context switch?

– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly
– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g., LRU)

02/19/09 18

Cool Paging Tricks

• Exploit level of indirection between VA and PA
– shared memory

• regions of two separate processes’ address spaces map to the
same physical frames

– read/write: access to share data
– execute: shared libraries!

• will have separate PTEs per process, so can give different
processes different access privileges

• must the shared region map to the same VA in each process?
– copy-on-write (COW), e.g., on fork()

• instead of copying all pages, created shared mappings of
parent pages in child address space

– make shared mappings read-only in child space
– when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

02/19/09 19

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

02/19/09 20

Summary

• We know how address translation works in the
“vanilla” case (single-level page table, no fault, no
TLB)
– hardware splits the virtual address into the virtual page

number and the offset; uses the VPN to index the page
table; concatenates the offset to the page frame number
(which is in the PTE) to obtain the physical address

• We know how the OS handles a page fault
– find or create (through eviction) a page frame into which to

load the needed page
– find the needed page on disk and bring it into the page

frame
– fix up the page table entry
– put the process on the ready queue

02/19/09 21

• We’re aware of two “gotchas” that complicate things
in practice
– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic
• solution: use a hardware cache (TLB = translation lookaside

buffer) to absorb page table lookups
– the memory required to hold page tables can be huge

• solution: use multi-level page tables; can page the lower levels,
or at least omit them if the address space is sparse

– this makes the TLB even more important, because without it, a
single user-level memory reference can cause two or three or four
page table memory references … and we can’t even afford one!

02/19/09 22

• TLB details
– Implemented in hardware

• fully associative cache (all entries searched in parallel)
• cache tags are virtual page numbers
• cache values are page table entries (page frame numbers)
• with PTE + offset, MMU can directly calculate the physical

address
– Can be small because of locality

• 16-48 entries can yield a 99% hit ratio
– Searched before the hardware walks the page table(s)

• hit: address translation does not require an extra memory
reference (or two or three or four) – “free”

• miss: the hardware walks the page table(s) to translate the
address; this translation is put into the TLB, evicting some other
translation; typically managed LRU by the hardware

02/19/09 23

– On context switch
• TLB must be purged/flushed (using a special hardware

instruction) unless entries are tagged with a process ID
– otherwise, the new process will use the old process’s TLB entries

and reference its page frames!

• Cool tricks
– shared memory
– copy-on-write
– memory-mapped files

	CSE 451: Operating Systems Winter 2009 Module 11a Page Table Management, TLBs, and Other Pragmatics
	Address translation and page faults (refresher!)
	How does OS handle a page fault?
	Slide 4
	Slide 5
	“Issues”
	Paging the page tables 1
	Paging the page tables 2
	Two-level page tables
	Two level page tables
	Slide 11
	Generalizing
	Alternatives
	Making it all efficient
	TLBs
	Managing TLBs
	Managing TLBs (2)
	Cool Paging Tricks
	Slide 19
	Summary
	Slide 21
	Slide 22
	Slide 23

