CSE 451:

Operating

Systems
Winter 2009

Introduction

Mark
Zbikowski

Gary
Kimura

Introduction

 Administration
— Introductions

A bit about ourselves
Mark Zbikowski CSE 480
Gary Kimura CSE 476

— Three sources of truth

Lectures

Reading
Projects/Source code
All are important

— Lectures

5 January, 2009

Supplement rather than recapitulate text
Lots of historical/developmental info
Lots of “why was it done this way” info
ASK QUESTIONS!

Introduction

* More Administration

— Homework

* Keep up with the reading (Silberschatz, et al.). Far better for
you to read the chapters BEFORE the class

* Do/familiarize yourself with the problems at the end of each
chapter

— Quizzes
* Regular quiz (one or two questions)

* Last 10 to 15 minutes of class on Friday, returned to you on the
following Wednesday.

* Expect 9 quizzes throughout the quarter

5 January, 2009 3

Introduction

* More Administration

— Projects based on Windows 2003 Server sources
* 4 projects
— Two individual projects and two group projects
— You Will Write Code. You Will Read Lots of Code
— You are either very familiar with C or will become so quickly

* Online textbook, via class web page

* Lab session to get students familiar with the development
environment

* Late policy

5 January, 2009

Introduction

* Last Administration

— Final
* Take home part (could be an essay)
* Small in class portion

— Grading
* Goal is to determine what YOU have learned and can express
* 30% quizzes (throw out the lowest quiz)
* 35% projects
* 30% Final
* 5% incidentals
* Scores available via Catalyst

5 January, 2009

Goals for this course

* Two views of an OS
— The OS user’s (i.e., application programmer’s) view
— The OS implementer’s view

* In this class we will learn:
— What are the major parts of an O.S.
— How is the O.S. and each sub-part structured
— What are the important common interfaces
— What are the important policies
— What algorithms are typically used
— What engineering/practicality tradeoffs were used

5 January, 2009

Introduction to Operating Systems

* What is it?
— Textbook:

“... manages the computer hardware”
“... basis for application programs”

— Once upon a time:

5 January, 2009

Programs were run one at a time, no multitasking

If you wanted to read data, you wrote the code to read from the
punch card reader

If you wanted to output data, you wrote code to flash lights or to
make the printer do things

If your application “crashed”, YOU (or the operator) would push
a button on the computer to get it to restart, and read the next
program from the card reader

Was this an appropriate use of YOUR time?

What is an OS?

* How can we make this easier?
— Let programs share the hardware (CPU, memory, devices,
storage)

— Supply software to abstract hardware (disk vs net or
wireless mouse vs optical mouse vs wired mouse)

* Abstract means to hide details, leaving only a common skeleton

— “All the code you didn’t write” in order to get your application
to run. The little box, below, is simple, no?

Applications
OS

Hardware

5 January, 2009

Application
Services

SYSTEM

Machine
Independent
Services

MD API

Machine Dependent
Services

5 January, 2009

A

What's in an OS?

GTA-2 Sql Server
CALL API System Utils Shells Windowing & graphics
Naming Access Control Windowing & Gfx
Networking Virtual Memory
Generic /O File System Process Management

Device Drivers

Memory Management

Interrupts, Cache, Physical Memory, TLB, Hardware Devices

Logical OS Structure

Why bother with an OS?

* Application benefits
— programming simplicity

* see high-level abstractions (files) instead of low-level hardware
details (device registers)

* abstractions are reusable across many programs
— portability (across machine configurations or architectures)
* device independence: 3Com card or Intel card? User benefits
— safety
* program “sees” own virtual machine, thinks it owns computer
* OS protects programs from each other
* OS multiplexes resources across programs
— efficiency (cost and speed)
* share one computer across many users
* concurrent execution of multiple programs

5 January, 2009 10

The major OS issues

structure: how is the OS organized? What are the resources a
program can use?

sharing: how are resources shared across users?
naming: how are resources named (by users or programs)?

security: how is the integrity of the OS and its resources
ensured?

protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with
hardware or with a program)?

extensibility: can we add new features?

communication: how do programs exchange information,
including across a network?

5 January, 2009

Major issues in OS (2)

* Concurrency: how are parallel activities created and controlled?

* Scale and growth: what happens as demands or resources
increase?

* Persistence: how to make data last longer than programs
* Compatibility & Legacy Apps: can we ever do anything new?
* Distribution: Accessing the world of information

* Accounting: who pays the bills, and how do we control resource
usage?

* These are engineering trade-offs
* Based on objectives and constraints

5 January, 2009 12

Progression of concepts and form factors

1950 1960 1970 1980

_ MULTICS
mainframes - _ Q\ -
no compilers time distributed

software shared multiuser systems

batch multiprocessor

resident networked

; fault tolerant
monitors

UNIX

minicomputers .
no compilers

software : : :
time multiuser multiprocessor

resident shared N fault tolerant

networked
.

clustered
UNIX

monitors

desktop computers .
no compilers

software interactive multiprocessor

multiuser networked

UNIX

compilers no
software

handheld computers

interactive
networked

5 January, 2009 © Silberschatz, Galvin and Gagne 13

Has it all been discovered?

* New challenges constantly arise

embedded computing (e.g., iPod)

sensor networks (very low power, memory, etc.)
peer-to-peer sysiems

ad hoc networking

scalable server farm design and management (e.g., Google)

software for utilizing huge clusters (e.g., MapReduce,
BigTable)

overlay networks (e.g., PlanetLab)
worm fingerprinting
finding bugs in system code (e.g., model checking)

5 January, 2009 14

Has it all been discovered?

* Old problems constantly re-define themselves

— the evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

— but the ubiquity of PCs re-defined the issues in protection
and security

5 January, 2009

15

Protection and security as an example

* none
* OS from my program

* your program from my program
* my program from my program
* access by intruding individuals
* access by intruding programs

* denial of service

 distributed denial of service

* spoofing
* spam

* worms

* viruses

* stuff you download and run knowingly (bugs, trojan horses)
* stuff you download and run obliviously (cookies, spyware)

5 January, 2009 16

OS history

* Inthe very beginning...

— OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

— interfaces were literally switches and blinking lights

* And then came batch systems
— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
* job gets executed
* output is printed, including a dump of memory
* repeat...
— card readers and line printers were very slow
* so CPU was idle much of the time (wastes $$)

5 January, 2009

17

Spooling

* Disks were much faster than card readers and
printers

* Spool (Simultaneous Peripheral Operations On-Line)

— while one job is executing, spool next job from card reader
onto disk

* slow card reader I/O is overlapped with CPU

— can even spool multiple programs onto disk/drum
* OS must choose which to run next
* job scheduling

— but, CPU still idle when a program interacts with a peripheral
during execution

— buffering, double-buffering

5 January, 2009 18

Multiprogramming

* To increase system utilization, multiprogramming
OSs were invented
— keeps multiple runnable jobs loaded in memory at once

— overlaps I/O of a job with computing of another

* while one job waits for I/O completion, OS runs instructions
from another job

— to benefit, need asynchronous I/O devices
* need some way to know when devices are done
— interrupts
— polling
— goal: optimize system throughput
* perhaps at the cost of response time...

5 January, 2009

19

Timesharing

* To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput
* Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g., editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)

5 January, 2009 20

Timesharing

* MIT CTSS system (operational 1961) was among the first timesharing
systems
— only one user memory-resident at a time (32KB memory!)
* MIT Multics system (operational 1968) was the first large timeshared
system
— nearly all OS concepts can be traced back to Multics!
— “second system syndrome”

5 January, 2009 21

* CTSS as an illustration of architectural and OS functionality

requirements

User program

d

~—

OS

5 January, 2009

22

Parallel systems

* Some applications can be written as multiple parallel
threads or processes

— can speed up the execution by running multiple
threads/processes simultaneously on multiple CPUs
[Burroughs D825, 1962]

— need OS and language primitives for dividing program into
multiple parallel activities
— need OS primitives for fast communication among activities

* degree of speedup dictated by communication/computation
ratio

— many flavors of parallel computers today
* SMPs (symmetric multi-processors, multi-core)
* MPPs (massively parallel processors)
* NOWs (networks of workstations)

* computational grid (SETI @home)
5 January, 2009 23

Personal computing

* Primary goal was to enable new kinds of applications
* Bit mapped display [Xerox Alto,1973]

— new classes of applications
— new input device (the mouse)

* Move computing near the display
— why?
* Window systems
— the display as a managed resource
* Local area networks [Ethernet]
— why?

Effect on OS?

5 January, 2009

Distributed OS

Distributed systems to facilitate use of geographically
distributed resources

— workstations on a LAN

— servers across the Internet

* Supports communications between programs

— Interprocess communication
* message passing, shared memory

— networking stacks

Sharing of distributed resources (hardware, software)
— load balancing, authentication and access contral, ...

* Speedup isn’t the issue

— access to diversity of resources is goal

5 January, 2009 25

Client/server computing

* Mail server/service

* File server/service

* Print server/service

* Compute server/service
* Game server/service

* Music server/service

* Web server/service

* etc.

5 January, 2009 26

Peer-to-peer (p2p) systems

* Napster

 Gnutella

— example technical challenge: self-organizing overlay
network

— technical advantage of Gnutella?
— er ... legal advantage of Gnutella?

5 January, 2009

27

Embedded/mobile/pervasive computing

* Pervasive computing
— cheap processors embedded everywhere
— how many are on your body now? in your car?
— cell phones, PDAs, network computers, ...

* Typically very constrained hardware resources
— slow processors i
— very small amount of memory (e.g., 8 MB)
— no disk
— typically only one dedicated application
— limited power

* But this is changing rapidly!

5 January, 2009

What is an OS?

* How were OS’s programmed?
— Oiriginally in assembly language
* Maximal power, all features of the hardware exposed to
developers
* Minimal clarity, takes extreme effort

* Minimal “portability”, OS is tightly tied to a single manufacturer’s
architecture

* GCOS (Honeywell/GE, ‘62), MVS and OS/360 (IBM, ‘64),
TOPS-10 (Digital, ‘64)
— Some special high-level languages
 ESPOL, NEWP, DCALGOL (Burroughs, ‘61)

— General high-level languages (with some assembly help)
* PASCAL (UCSD p-system ’78, early Macintosh)
* PL/1 (Multics, '64)

5 January, 2009 29

What is an OS?

* What do we do today?

- C

* Adequate to hide most hardware issues

— Precision, pointers

* Procedural, reasonably type-safe, modular

* Adequate for programmer to gauge efficiency
— Plus some assembler

* C does not reveal enough hardware

* Assembler source files

* In-line assembler in C files (only where it makes sense!)
— Very little C+

* Windows GUI completely in C++

* Can hide inefficiencies!

5 January, 2009

30

CSE 451

* Philosophy
— you may not ever build an OS

— but as a computer scientist or computer engineer you need to
understand the foundations

— most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make throughout
your careers — compromises among and within cost, performance,
functionality, complexity, schedule ...

* A good OS should be easily usable by everyone

IT’S NOT
L~ SUPPOSED
TO BE

ERGONOMIC.

! [Pl S ST e o
" MR WEM AQ Mg S Rl PO0RE

=

Copyright 2 ZB@z2 Thawves, Distributed by Mewspaper Enterprise Association, lnc.

5 January, 2009

LRI e =L | O P

31

Your next steps

* Familiarize yourself with course website
— Read it often (daily)

* Get on cse451 mailing list. Read your email daily
Read Chapters one and two by Wednesday

* Make sure you are familiar with C
— Write and debug legible and correct code
— Read, understand, and modify other’s code

5 January, 2009

32

	CSE 451: Operating Systems Winter 2009 Introduction
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Goals for this course
	Introduction to Operating Systems
	What is an OS?
	What’s in an OS?
	Why bother with an OS?
	The major OS issues
	Major issues in OS (2)
	Progression of concepts and form factors
	Has it all been discovered?
	Slide 15
	Protection and security as an example
	OS history
	Spooling
	Multiprogramming
	Timesharing
	Slide 21
	Slide 22
	Parallel systems
	Personal computing
	Distributed OS
	Client/server computing
	Peer-to-peer (p2p) systems
	Embedded/mobile/pervasive computing
	Slide 29
	Slide 30
	CSE 451
	Your next steps

