
 1

Administrivia
● Project 2b (parts 4, 5, 6) due tomorrow at 11:59 pm

– Questions?
● Project 3 Light to be released tomorrow
● Project 3 Full will be same as Autumn 2008

– http://www.cs.washington.edu/education/courses/451/08au/projects/project3/

● Feedback for Steve, Ryan, Sean?
● Rest of the time: Some slides taken from previous

quarter for full version of Project 3
– Probably still useful for Project 3 Light

http://www.cs.washington.edu/education/courses/451/08au/projects/project3/

 2

Project 3
● Work with a real file system
● Given:

– cse451fs: simplified file system for Linux
● Goals:

– Understand how it works
– Modify implementation to:

● Increase maximum size of files (currently 13KB)
● Allow for longer file names (currently 30 chars)

 3

Project 3 Setup
● Build a kernel module for cse451fs
● Transfer it to VMware
● On VMware

– load the cse451fs module
– format the file system using (modified) mkfs tool
– mount your file system
– Test using tools like ls, cat, etc. (see last slides for

gotchas)

● Step 1: try this procedure with given code
● Step 2: read cse451fs.h, then dir.c

 4

Linux FS layers

Disk drivers

Buffer cache

User apps

VFS

ext2 ext3 vfatcse451fs

 $ for disk blocks

 block device

Blocks

Inodes, direntries

Files, directories

 5

File systems in Linux
● Organize blocks in a block device into files and directories

Core concepts:
● Inodes and inode numbers

– Inode = structure maintaining all metadata about a file, except for name
– So, where are file names stored?

– Inode number = unique ID of inode
– One or more file names can point (link) to the same inode
– Inode numbers provide location independence

● Directory entry
– A pair (name, inode number)
– A directory is just a file, whose contents is a list of directory entries
– Directories have a bit set to tell user/shell/OS to treat file as a directory

 6

File system disk structure
● What types of things do we need to store in a file

system?

 7

cse451fs disk structure

● Superblock: tells where all other things are
– Contains inode map:

● Bit array, tracks which inodes are currently in use
– Contains parameter values (e.g., block size)

● Data map:
– Bit array, tracks which data blocks are in use

● Inode blocks:
– Contains all inodes (i.e., metadata for files) stored here

● Data blocks:
– Contains data of files / directories

 8

cse451fs structure

 struct cse451_super_block {
1365 __u16 s_nNumInodes; // inode map is tail of superblock
2 __u16 s_nDataMapStart; // block # of first data map block
1 __u32 s_nDataMapBlocks; // data map size, in blocks
3 __u32 s_nInodeStart; // block # of first inode block
85 __u32 s_nNumInodeBlocks; // number of blocks of inodes
88 __u32 s_nDataBlocksStart; // block # of first data block
4008 __u32 s_nDataBlocks; // number of blocks of data
7 __u32 s_nBusyInodes; // number of inodes in use
0x451f __u16 s_magic; // magic number

unsigned long s_imap; // name for inode map
 };

 1 1 1 85 4008

Sample values for a 4MB disk with 4 files and 3 dirs using 1K blocks

 9

Inode structure
#define CSE451_NUMDATAPTRS 10
struct cse451_inode {

__u16 i_mode; determines if file or dir
__u16 i_nlinks; (+ protection)
__u16 i_uid;
__u16 i_gid;
__u32 i_filesize;
__u32 i_datablocks[CSE451_NUMDATAPTRS];

};

 10

Inode structure
#define CSE451_NUMDATAPTRS 10
struct cse451_inode {

__u16 i_mode; determines if file or dir
__u16 i_nlinks; (+ protection)
__u16 i_uid;
__u16 i_gid;
__u32 i_filesize;
__u32 i_datablocks[CSE451_NUMDATAPTRS];

};

● What’s the size of the inode struct?
● Multiple inodes per block

– How many for 1K block?
● mkfs decides how many inodes to create, using heuristic

– create an inode for every three data blocks

● In general, the max number of inodes (so of files) is decided at FS formatting time

 11

Data blocks
● Blocks for regular files contain file data
● Blocks for directories contain directory entries:

#define CSE451_MAXDIRNAMELENGTH 30
struct cse451_dir_entry {

__u16 inode;
char name[CSE451_MAXDIRNAMELENGTH];

};

● Data block for / directory
containing:
. .. etc bin

Dir. entry Field Value

0 Inode 1

Name “.”

1 Inode 1

Name “..”

2 Inode 2

Name “etc”

3 Inode 3

Name “bin”

4 Inode 0

Name 0

Data block for /

 12

Sample data block usage

File/Directory Size Data Blocks

/ 4 entries + 1 null entry 1

/etc 4 entries + 1 null entry 1

/bin 4 entries + 1 null entry 1

/etc/passwd 1024 bytes 1

/etc/fstab 100 bytes 1

/bin/sh 10,000 bytes 10

/bin/date 5,000 bytes 5

Total: 20

For a 4MB file system with 1KB blocks
• /

• etc
• passwd
• fstab

• bin
• sh
• date

 13

Project 3 requirements
● Increase maximum sizes of files

– Be efficient for small files but allow large files
– Changing constant (=10) is not enough!
– Come up with a better design/structure for locating data blocks

● E.g., indirect blocks?
– You don’t have to support arbitrarily large files

● Fine to have constant new_max (but new_max >> old_max)

● Allow for longer file names
– Be efficient for short files names but allow large file names
– Again, don’t just change the constant

 14

Approaches for longer file names
● Store long names in a separate data block, and keep a pointer to that

in the directory entry.
– Short names can be stored as they are.
– Recommended

● Combine multiple fixed-length dir entries into a single long dir entry
(win95)
– It is easier if the entries are adjacent.

● Put a length field in the dir entry and store variable length strings
– need to make sure that when reading a directory, that you are positioned at the

beginning of an entry.

 15

Getting started with the code
● Understand the source of the limits in the existing implementation

– Look at the code that manipulates dir entries
● mkfs code
● dir.c in the file system source code

● Longer file names:
– The code for will largely be in dir.c: add_entry() and find_entry()
– In mkfs, change how the first two entries (for “.” and “..”) are stored

● Bigger files:
– super.c:get_block()
– References to i_datablock[] array in an inode will have to change

 16

Linux Buffer Manager Code
● To manipulate disk blocks, you need to go through the buffer cache
● Linux buffer cache fundamentals:

– blocks are represented by buffer_heads
● Just another data structure

– Actual data is in buffer_head->b_data
– For a given disk block, buffer manager could be:

● Completely unaware of it
– no buffer_head exists, block not in memory

● Aware of block information
– buffer_head exists, but block data (b_data) not in memory

● Aware of block information and data
– Both the buffer_head and its b_data are valid (“$ hit”)

 17

Accessing blocks
● To read a block, FS uses bread(…):

– Find the corresponding buffer_head
● Create if doesn’t exist

– Make sure the data is in memory (read from disk if
necessary)

● To write a block:
– mark_buffer_dirty() + brelse() - mark buffer as changed and release to kernel

(which does the writing)

 18

Tool limitation warning
● Some stuff in linux kernel is limited to 256 chars

– e.g. VFS, ls
– Be careful when testing long filenames!

• dd is useful for creating large test files
– dd if=/dev/zero of=200k bs=1024 count=200

• df is useful to check you’re freeing everything
correctly

 19

Gcc warning
● gcc might insert extra space into structs

– How big do you think this is?
struct test { char a; int b; }

– Why is this a problem?
● What if test represents something you want on disk?

– e.g. directory entries
● Discrepancy between the disk layout and memory layout

– Fix:
struct test2 {
 char a;
 int b;
} __attribute__((packed));

• sizeof(test2) is now 5

 20

Linux FS Layers (Revisit)

Disk drivers

Buffer cache

User apps

VFS

ext2 ext3 NFScse451fs

Blocks

Inodes, direntries

Files,
directories

Network

 21

Linux Buffer Manager
● Buffer cache caches disk blocks & buffers writes

– When you write to a file, the data goes into buffer cache (for write-back buffer
caches)

– Sync is required to flush the data to disk
● Update and bdflush processes flush data to disk (every 30s)

● Linux buffer cache code fundamentals:
– Blocks are represented by buffer_heads

● Actual data is in buffer_head->b_data
– For a given disk block, buffer manager could be:

● Completely unaware of it
– no buffer_head exists, block not in memory

● Aware of block information
– buffer_head exists, but block data (b_data) not in memory

● Aware of block information and data
– Both the buffer_head and its b_data are valid (“$ hit”)

 22

Accessing blocks
● To read a block, FS uses sb_bread(…):

– Find the corresponding buffer_head
● Create if doesn’t exist

– Make sure buffer_head->b_data is in memory (read
from disk if necessary)

● To write a block:
– mark_buffer_dirty() + brelse() - mark buffer as changed and release to kernel

(which does the writing)

 23

Some buffer manager functions

cse451_bread(pbh, inode,
 block, create)

Get the buffer_head for the given disk block,
ensuring that the data is in memory and ready for
use. Increments ref count; always pair with a brelse.

cse451_getblk(pbh, inode,
 block, create)

Get the buffer_head for the given disk block. Does
not guarantee anything about the state of the actual
data. Increments ref count; always pair with a
brelse. Zeros out new blocks (required for security).

brelse(bh) Decrement the ref. count of the given buffer.

mark_buffer_dirty(bh) Mark the buffer modified, meaning needs to be
written to disk at some point.

mark_buffer_uptodate(bh) Indicate that the data pointed to by bh is valid.

[Remember this lock-release pattern for future use in multi-threaded (multi-process)
programs; it’s how reference-counted pointers also work.]

 24

Network File Systems
● Provide access to remote files over a network

– Typically aim for location and network transparency
● Designed and optimized for different types of operations

– E.g., work over LANs, over WANs, support disconnected operations, fault-
tolerance, scalability, consistency, etc.

Examples:
● Network File System (NFS) – Sun Microsystems
● Server Message Block (SMB) – originally IBM, Microsoft
● Andrew File System (AFS) – CMU
● Coda – CMU

 25

NFS
● A server exports (or shares) a directory

● A client mounts the remote directory onto his local FS namespace
– The mounted directory looks like an integral subtree of the local file system,

replacing the subtree descending from the local directory [1]

– However, it’s all namespace magic, nothing is actually stored on local disks

[1] http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

 26

Mounting an NFS Export
● A remote exported directory can be “glued” onto the local hierarchy

Figure taken from http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

Exported
directories

 27

The NFS Protocol
● NFS is designed to operate in a heterogeneous environment of different machines,

operating systems, and network architectures
– NFS specifications are independent of these media

● This independence is achieved through the use of RPC and XDR (eXternal Data
Representation)

● Nearly one-to-one correspondence between regular UNIX file system calls and the
NFS protocol RPCs
– looking up a file within a directory
– reading a set of directory entries
– accessing file attributes
– reading and writing files

Bullets taken from presentation at http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

 28

The NFS Architecture

Figure taken from http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

 29

Example: Setting up an NFS Share

● Server exports directory
– Check nfsd is running and it if not (e.g., service nfsd start)
– Edit /etc/exports file

• /usr/shared 192.168.0.0/255.255.255.0(rw)
• man exports for more detailed structure of file

– Force nfsd to re-read /etc/exports using exportfs –ra

● Client mounts the remote directory locally
• mount –t nfs 192.168.0.1:/usr/share /usr/local
 (192.168.0.1 is the server’s IP address)

– can enable automatic mounting by editing /etc/fstab (man fstab)

Note:
● The above is just a “by-hand” example; use the Internet for more precise tutorials and troubleshooting

