Administrivia

Project 2b (parts 4, 5, 6) due tomorrow at 11:59 pm
— Questions?
Project 3 Light to be released tomorrow

Project 3 Full will be same as Autumn 2008

— http://www.cs.washington.edu/education/courses/451/08au/projects/project3/

Feedback for Steve, Ryan, Sean?

Rest of the time: Some slides taken from previous
quarter for full version of Project 3

— Probably still useful for Project 3 Light

http://www.cs.washington.edu/education/courses/451/08au/projects/project3/

Project 3

 Work with a real file system
e (Given:

— cse45 11s: simplified file system for Linux
e Goals:

— Understand how 1t works

— Modify implementation to:
 Increase maximum size of files (currently 13KB)

e Allow for longer file names (currently 30 chars)

Project 3 Setup

Build a kernel module for cse451fs
Transfer it to VMware

On VMware
— load the cse4511fs module
— format the file system using (modified) mkfs tool
— mount your file system

— Test using tools like Is, cat, etc. (see last slides for
gotchas)

Step 1: try this procedure with given code
Step 2: read cse4511s.h, then dir.c

Linux FS layers

User apps

Files, directories

cse451fs ext2

Buffer

VFS

odes, direntrw\

ext3

vfat

e i

cache

< $ for disk blocks

Disk

rivers

& block device 4

File systems 1n Linux

e Organize blocks in a block device into files and directories

Core concepts:

e Inodes and inode numbers
— Inode = structure maintaining all metadata about a file, except for name
— So, where are file names stored?
— Inode number = unique ID of inode
— One or more file names can point (link) to the same inode
— Inode numbers provide location independence
e Directory entry
— A pair (name, inode number)
— A directory is just a file, whose contents is a list of directory entries

— Directories have a bit set to tell user/shell/OS to treat file as a directory

File system disk structure

 What types of things do we need to store 1n a file
system?

csed4511s disk structure

boot [superblock |data map |mnode blocks| data blocks

e Superblock: tells where all other things are
— Contains inode map:

 Bit array, tracks which inodes are currently in use
— Contains parameter values (e.g., block size)

 Data map:
— Bit array, tracks which data blocks are in use

Inode blocks:

— Contains all inodes (1.e., metadata for files) stored here

Data blocks:

— Contains data of files / directories

cse4511s structure

1 1 1 85 4008
boot [superblock |data map |mode blocks| data blocks

struct cse4d51 super block {

1365 __ul6 s nNumInodes; // inode map is tail of superblock
2 __ulé6 s nDataMapStart; // block # of first data map block
1 __u32 s nDataMapBlocks; // data map size, in blocks
3 __u32 s nInodeStart; // block # of first inode block
85 ~_u32 s nNumInodeBlocks; // number of blocks of inodes
88 __u32 s _nDataBlocksStart; // block # of first data block
4008 __u32 s nbataBlocks; // number of blocks of data
7 __u32 s nBusyInodes; // number of inodes in use
O0x451f ul6 s magic; // magic number

unsigned long s _imap; // name for inode map

i g

Sample values for a 4MB disk with 4 files and 3 dirs using 1K blocks 8

Inode structure

#define CSE451 NUMDATAPTRS 10

struct cse45l1 inode {

~_ul6o 1 mode; < determines if file or dir
~_ul6 i nlinks; (+ protection)

__ul6 1 uid;

__ule6 i gid;

u32 1 filesize;
u32 i datablocks[CSE451 NUMDATAPTRS];

Inode structure

#define CSE451 NUMDATAPTRS 10

struct cse451 inode {

__ulo6 i mode; €& determines if file or dir
~_ul6o 1 nlinks; (+ protection)

~_ul6 1 uid;

__ule 1 gid;

~u32 1 filesize;
~u32 1 datablocks[CSE451 NUMDATAPTRS];

e What’s the size of the inode struct?

e Multiple mmodes per block
— How many for 1K block?

* mkfs decides how many inodes to create, using heuristic
— create an inode for every three data blocks

e In general, the max number of inodes (so of files) is decided at FS formatting time

10

Data blocks

e Blocks for regular files contain file data
e Blocks for directories contain directory entries:

#define CSE451 MAXDIRNAMELENGTH 30

struct csed45l1 dir entry {
ul6 inode;

char name [CSE451 MAXDIRNAMELENGTH] ;

e

e Data block for / directory
containing;:
etc bin

Data block for /

Dir. entry Field Value

0 Inode 1
Name i

1 Inode 1
Name e

2 Inode 2
Name “etc”

3 Inode 3
Name “bin”

4 Inode 0
Name 0

11

Sample data block usage

For a 4MB file system with 1KB blocks
S |

etc

passwd
- fstab
bin

- sh

- date
File/Directory Size Data Blocks
/ 4 entries + 1 null entry 1
/etc 4 entries + 1 null entry 1
/bin 4 entries + 1 null entry 1
/etc/passwd 1024 bytes 1
/etc/fstab 100 bytes 1
/bin/sh 10,000 bytes 10
/bin/date 5,000 bytes 5

Total: 20 12

Project 3 requirements

e Increase maximum sizes of files
— Be efficient for small files but allow large files
— Changing constant (=10) is not enough!

- Come up with a better design/structure for locating data blocks
e E.g., indirect blocks?

— You don’t have to support arbitrarily large files
* Fine to have constant new max (but new max >> old max)

e Allow for longer file names

— Be efficient for short files names but allow large file names
— Again, don’t just change the constant

13

Approaches for longer file names

Store long names in a separate data block, and keep a pointer to that
in the directory entry.

— Short names can be stored as they are.

- Recommended

Combine multiple fixed-length dir entries into a single long dir entry
(Win9)5)

— It is easier if the entries are adjacent.
Put a length field in the dir entry and store variable length strings

— need to make sure that when reading a directory, that you are positioned at the
beginning of an entry.

14

Getting started with the code

e Understand the source of the limits in the existing implementation

— Look at the code that manipulates dir entries
e mkfs code
e dir.c in the file system source code
e Longer file names:
— The code for will largely be in dir.c: add_entry() and find_entry()

€6 9

- In mkfs, change how the first two entries (for ““.”” and “..””) are stored

* Bigger files:
— super.c:get block()
— References to 1_datablock[] array in an inode will have to change

15

Linux Buffer Manager Code

e To manipulate disk blocks, you need to go through the buffer cache

 [inux buffer cache fundamentals:

— blocks are represented by buffer heads
 Just another data structure

— Actual data is in buffer head->b data
— For a given disk block, buffer manager could be:

e Completely unaware of it

— no buffer head exists, block not in memory

e Aware of block information
— buffer head exists, but block data (b data) not in memory

e Aware of block information and data
— Both the buffer head and its b_data are valid (“$ hit”)

16

Accessing blocks

e To read a block, FS uses bread(...):
— Find the corresponding buffer head
e Create 1f doesn’t exist

— Make sure the data 1s in memory (read from disk 1f
necessary)

e To write a block:

- mark buffer dirty() + brelse() - mark buffer as changed and release to kernel
(which does the writing)

17

Tool limitation warning

 Some stuff in linux kernel 1s limited to 256 chars
- e.g. VES, Is
— Be careful when testing long filenames!

- dd 1s useful for creating large test files
- dd if=/dev/zero of=200k bs=1024 count=200

- df 1s useful to check you’re freeing everything
correctly

18

Gce warning

e gcc might insert extra space into structs

— How big do you think this 1s?
struct test { char a; int b; }

— Why is this a problem?
 What if test represents something you want on disk?
— e.g. directory entries
e Discrepancy between the disk layout and memory layout

- Fix:
struct test2 {
char a;
int b;

} __attribute_ ((packed));

sizeof (test?) 1s now 5

19

Linux FS Layers (Revisit)

User apps

Files,
directories

VFS

Inodes, direnties/\

cse451fs

ext2 ext3

NFS

Blocks \/

Buffer cache

Disk drivers

A

Network

20

Linux Buffer Manager

 Buffer cache caches disk blocks & buffers writes

— When you write to a file, the data goes into buffer cache (for write-back buffer
caches)

— Sync 1s required to flush the data to disk
» Update and bdflush processes flush data to disk (every 30s)

e Linux buffer cache code fundamentals:
— Blocks are represented by buffer heads
» Actual data is in buffer head->b data
— For a given disk block, buffer manager could be:
e Completely unaware of it
— no buffer head exists, block not in memory
e Aware of block information
— buffer _head exists, but block data (b_data) not in memory

 Aware of block information and data
— Both the buffer head and its b _data are valid (“$ hit”)

21

Accessing blocks

 To read a block, FS uses sb_bread(...):
— Find the corresponding buffer head

e Create if doesn’t exist

— Make sure buffer head->b data 1s in memory (read
from disk 1f necessary)

 To write a block:

— mark buffer dirty() + brelse() - mark buffer as changed and release to kernel
(which does the writing)

22

Some buffer manager functions

cse451 bread (pbh, inode,
block, create)

Get the buffer_head for the given disk block,
ensuring that the data is in memory and ready for
use. Increments ref count; always pair with a brelse.

cse451 getblk (pbh, inode,
block, create)

Get the buffer_head for the given disk block. Does
not guarantee anything about the state of the actual
data. Increments ref count; always pair with a
brelse. Zeros out new blocks (required for security).

brelse (bh)

Decrement the ref. count of the given buffer.

mark buffer dirty (bh)

Mark the buffer modified, meaning needs to be
written to disk at some point.

mark buffer uptodate (bh)

Indicate that the data pointed to by bh is valid.

[Remember this lock-release pattern for future use in multi-threaded (multi-proces
programs; it's how reference-counted pointers also work.] 23

Network File Systems

 Provide access to remote files over a network
— Typically aim for location and network transparency

e Designed and optimized for different types of operations

- E.g., work over LANSs, over WANSs, support disconnected operations, fault-
tolerance, scalability, consistency, etc.

Examples:

e Network File System (NFS) — Sun Microsystems

e Server Message Block (SMB) — originally IBM, Microsoft
e Andrew File System (AFS) - CMU

e Coda—-CMU

24

NFS

e A server exports (or shares) a directory

e A client mounts the remote directory onto his local FS namespace

— The mounted directory looks like an integral subtree of the local file system,
replacing the subtree descending from the local directory [1]

— However, it’s all namespace magic, nothing is actually stored on local disks

25

Mounting an NFS Export

e A remote exported directory can be “glued” onto the local hierarchy

U: Si: S2:

Exported
directories
local shared

The NFS Protocol

e NFS is designed to operate in a heterogeneous environment of different machines,
operating systems, and network architectures

— NFS specifications are independent of these media

» This independence is achieved through the use of RPC and XDR (eXternal Data
Representation)

e Nearly one-to-one correspondence between regular UNIX file system calls and the
NFS protocol RPCs

— looking up a file within a directory
— reading a set of directory entries

— accessing file attributes

— reading and writing files

27

The NFS Architecture

client

system-calls interface

!

VFS interface

'

Y

!

server

VFS interface

l

other types of UNIX file NFS
file systems system client
RPC/XDR

NFS UNIX file
server system
RPC/XDR

S .
l T
‘ network ‘ e

Example: Setting up an NFS Share

e Server exports directory
— Check nfsd is running and it if not (e.g., service nfsd start)

— Edit /etc/exports file
/usr/shared 192.168.0.0/255.255.255.0 (rw)

- man exports for more detailed structure of file
— Force nfsd to re-read /etc/exports using exportfs -ra

e Client mounts the remote directory locally
mount -t nfs 192.168.0.1:/usr/share /usr/local
(192.168.0.1 is the server’s IP address)
— can enable automatic mounting by editing /etc/fstab (man fstab)

Note:

* The above is just a “by-hand” example; use the Internet for more precise tutorials and troubleshooting

29

