
CSE 451 Homework 3

May 7 2009

USEFUL/OBVIOUS TIPS

• Due Monday May 11th before class starts

• Read the write-up multiple times

• Read the GoPosts about the HW

• Post questions to the GoPost

• Write strong tests (at least 1/3 of points)

Part 1 - Semaphore Package

• Use pthread condition variables and mutex
– Pthread_cond_wait(), pthread_cond_broadcast(),

pthread_mutex_lock(), pthread_mutex_unlock()

• You may not use any semaphore libraries

• Decide on an interface:
– typedef struct _semaphore{ … } semaphore;

– initialize(s, start_value)

– wait(s) //P

– signal(s) //V

– etc…

Part 2 – Bounded Buffer Pro/Con

• Use your semaphore package here

• Nice if this package is generic enough to
handle all types, though not required

• Interface should handle an arbitrary amount
of producers and consumers

• Examples: add_to_buffer(buf_t buf, item_t item),

item_t consume_from_buffer(buf_t buf)

Part 2 - continued

• A couple of counting semaphores to handle
empty and full buffers

• A binary semaphore to enforce mutual
exclusion

• See lecture 8 (specifically slide 10)

Part 3 – Crack the key

• One producer thread and multiple consumer threads (one
per core)

• You are trying to crack 4 bytes
– Write-up says use blocks of 1024 keys

add_to_buffer(buf, 0);

add_to_buffer(buf, 1024);

add_to_buffer(buf, 2048);

Note: You don’t have to add every key to the buffer

• Consume from a buffer and try all 1024 keys starting from
the value just consumed

• See example code for how to use AES encryption and
decription

http://www.cs.washington.edu/education/courses/cse451/CurrentQtr/homewor
k/aes_451.tar.gz

http://www.cs.washington.edu/education/courses/cse451/CurrentQtr/homework/aes_451.tar.gz
http://www.cs.washington.edu/education/courses/cse451/CurrentQtr/homework/aes_451.tar.gz

MIDTERM

Wednesday May 13, 2009
• Kernel vs User

– system calls, protection bit

• Processes/threads
– Address space, process state, fork, context switches, kernel vs user,

shared memory or message passing

• Scheduling
– Tradeoffs between different algorithms, avg turnaround time & avg

wait time, fairness, preemption

• Synchronization
– Critical sections, atomic instructions, locks, mutex, semaphores,

monitors

• MM
– Fragmentation, paging, virtual memory, TLBs, page replacement

