CSE 451 Homework 3

May 7 2009

USEFUL/OBVIOUS TIPS

• Due Monday May 11th before class starts

- Read the write-up *multiple* times 🙂
- Read the GoPosts about the HW
- Post questions to the GoPost
- Write strong tests (at least 1/3 of points)

Part 1 - Semaphore Package

- Use pthread condition variables and mutex
 - Pthread_cond_wait(), pthread_cond_broadcast(),
 pthread_mutex_lock(), pthread_mutex_unlock()
- You may *not* use any semaphore libraries
- Decide on an interface:
 - typedef struct _semaphore{ ... } semaphore;
 - initialize(s, start_value)
 - wait(s) //P
 - signal(s) //V
 - etc...

Part 2 – Bounded Buffer Pro/Con

- Use your semaphore package here
- Nice if this package is generic enough to handle all types, though not required
- Interface should handle an arbitrary amount of producers and consumers
- Examples: add_to_buffer(buf_t buf, item_t item), item_t consume_from_buffer(buf_t buf)

Part 2 - continued

- A couple of counting semaphores to handle empty and full buffers
- A binary semaphore to enforce mutual exclusion
- See lecture 8 (specifically slide 10)

Part 3 – Crack the key

- One producer thread and multiple consumer threads (one per core)
- You are trying to crack 4 bytes
 - Write-up says use blocks of 1024 keys
 add_to_buffer(buf, 0);
 add_to_buffer(buf, 1024);
 add_to_buffer(buf, 2048);
 Note: You don't have to add every key to the buffer
- Consume from a buffer and try all 1024 keys starting from the value just consumed
- See example code for how to use AES encryption and decription

http://www.cs.washington.edu/education/courses/cse451/CurrentQtr/homewor k/aes_451.tar.gz

MIDTERM

Wednesday May 13, 2009

- Kernel vs User
 - system calls, protection bit
- Processes/threads
 - Address space, process state, fork, context switches, kernel vs user, shared memory or message passing
- Scheduling
 - Tradeoffs between different algorithms, avg turnaround time & avg wait time, fairness, preemption
- Synchronization
 - Critical sections, atomic instructions, locks, mutex, semaphores, monitors
- MM
 - Fragmentation, paging, virtual memory, TLBs, page replacement