
 3

Project 2
● You have to:

– Implement a user thread library
– Implement synchronization primitives
– Solve a synchronization problem
– Add Preemption
– Implement a multithreaded web server
– Get some results and write a (small) report

● Part a and b due separately
– Part a due Friday May 8th, 11:59pm
– Part b due Friday May 22nd, 11:59pm

Part a

Part b



 4

Simplethreads
● We give you:

– Skeleton functions for thread interface
– Machine-specific code

● Support for creating new stacks
● Support for saving regs/switching stacks

– A generic queue
● When do you need one?

– Very simple test programs
● You should write more, and include them in the turnin

– Singlethreaded web server



 5

Simplethreads Code Structure

include/sthread.h

Other appsWeb server 
(web/sioux.c)

test/*.c

lib/sthread_user.h
lib/sthread_user.c

lib/sthread_ctx.c
lib/sthread_ctx.h

You write this

sthread_switch_i386.h

sthread_switch_powerpc.h

lib/sthread_switch.S

lib/sthread_queue.c
lib/sthread_queue.h

lib/sthread_preempt.c
lib/sthread_preempt.h



 6

Thread Operations
● What functions do we need?

● What should the TCB look like?



 7

Thread Operations
● void sthread_init()

– Initialize the whole system
● sthread_t 
sthread_create(func start_func, void *arg)
– Create a new thread and make it runnable

● void sthread_yield()
– Give up the CPU

● void sthread_exit(void *ret)
– Exit current thread

● Structure of the TCB:
struct _thread {

 sthread_ctx_t *saved_ctx;
 ………

}



 8

Sample multithreaded program
int main(int argc, char **argv) {

int i;

sthread_init();    
for(i=0; i<3; i++)
   if (sthread_create(thread_start, (void*)i) == NULL) {
    printf("sthread_create failed\n");

  exit(1);
   }

    
   sthread_yield();
   printf("back in main\n");
   return 0;
}

void *thread_start(void *arg) {
  printf("In thread_start, arg = %d\n", (int)arg);
  return 0;
}

● Output? (assume no preemption)



 9

Managing Contexts (given)
● Thread context = thread stack + stack pointer 
● sthread_new_ctx(func_to_run)

– creates a new thread context that can be switched to
●  sthread_free_ctx(some_old_ctx)

– Deletes the supplied context

  sthread_switch(oldctx, newctx)
– Puts current context into oldctx
– Takes newctx and makes it current



 10

How sthread_switch works
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 running Thread 2 ready
Want to switch to thread 2…

Thread 2
registers

Thread 1 regs



 11

Push old context
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs



 12

Save old stack pointer
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs



 13

Change stack pointers
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 2
registers

Thread 1
registers

Thread 1 regs



 14

Pop off new context
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers

Thread 2 regs



 15

Done; return
Xsthread_switch:

pusha
movl %esp,(%eax)
movl %edx,%esp
popa
ret

Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers What got switched?

 SP
 PC (how?)
 Other registers

Thread 2 regs



 

Adjusting the PC
Thread 1 TCB
 …      SP

Thread 2 TCB
 …        SP

ESP

CPU

Thread 2 running:
switch(t2,...);
0x800: printf(“test 2”);

Thread 1
registers

 ret pops off the new return 
address!

ra=0x800

 PC

Thread 1 (stopped):
switch(t1,t2);
0x400: printf(“test 1”);

ra=0x400



 17

Synchronization primitives: Mutex
● sthread_mutex_t sthread_mutex_init()
● void sthread_mutex_free(sthread_mutex_t lock)

● void sthread_mutex_lock(sthread_mutex_t lock)
● Returned thread is guaranteed to acquire lock

● void sthread_mutex_unlock(sthread_mutex_t lock)
● Release lock

● See sthread.h



 18

Synch primitives: Condition variables
● sthread_cond_t sthread_cond_init()
● void sthread_cond_free(sthread_cond_t cond)

● void sthread_cond_signal(sthread_cond_t cond)
– Wake-up one waiting thread, if any

● void sthread_cond_broadcast(sthread_cond_t cond)
– Wake-up all waiting threads, if any

● void 
sthread_cond_wait(sthread_cond_t cond, sthread_mutex_t lock)
– Wait for given condition variable
– Returning thread is guaranteed to hold the lock



 19

Things to think about

● How do you create a thread?
– How do you pass arguments to the thread’s start function?
– (sthread_new_ctx() doesn’t call function w/ arguments)

● How do you deal with the initial (main) thread?
● When/how do you free resources for a terminated thread?

– Can a thread free its stack itself?
● Where does sthread_switch return?
● Who and when should call sthread_switch?
● How do you block a thread?
● What should be in struct _sthread_mutex|cond?



 20

Sthread is similar to pthread
● Pthread (POSIX threads) is a preemptive, kernel-

level thread library
● You can compare your implementation against 

pthreads
– ./configure --with-pthreads



 21

Synchronization primitives
What is synchronization?



 22

Synchronization

High-level
● Monitors
● Java synchronized method

OS-level support
 Special variables – mutex, futex, semaphor, condition var
 Message passing primitives

Low-level support
 Disable/enable interrupts 
 Atomic instructions (test_and_set)



 23

Disabling/Enabling Interrupts

● Prevents context-switches during execution of critical sections
● Sometimes necessary 

– E.g. to prevent further interrupts during interrupt handling
● Many problems

Thread B:
disable_irq()
critical_section()
enable_irq()

Thread A:
disable_irq()
critical_section()
enable_irq()



 24

Disabling/Enabling Interrupts

● Prevents context-switches during execution of critical sections
● Sometimes necessary 

– E.g. to prevent further interrupts during interrupt handling
● Many problems

– E.g., an interrupt may be shared
– How does it work on multi-processors?

Thread B:
disable_irq()
critical_section()
enable_irq()

Thread A:
disable_irq()
critical_section()
enable_irq()



 25

Hardware support
● Atomic instructions:

– test_and_set
– Compare-exchange (x86)

● Use these to implement higher-level primitives
– E.g. test-and-set on x86 (given to you for part 4) is written using 

compare-exchange:
● compare_exchange(lock_t *x, int y, int z):
if(*x == y)

*x = z;
return y;

else 
return *x;

● test_and_set(lock_t *l) {
          ?

}



 26

Looking ahead: preemption

● You can start inserting synchronization code
– disable/enable interrupts
– atomic_test_and_set

● Where would you use these?



 27

Synchronization

High-level
● Monitors
● Java synchronized method

OS-level support
 Special variables – mutex, futex, semaphor, condition var
 Message passing primitives

Low-level support
 Disable/enable interrupts 
 Atomic instructions

• Used to implement higher-
level sync primitives (in the 
kernel typically)

• Why not use in apps?



 28

Semaphore review
● Semaphore = a special variable

– Manipulated atomically via two operations:
● P  (wait)
● V  (signal)

● Has a counter = number of available resources
– P decrements it
– V increments it

● Has a queue of waiting threads
– If execute wait() and semaphore is free, continue
– If not, block on that waiting queue

● signal() unblocks a thread if it’s waiting
● Mutex is bi-value semaphore (capacity 1)



 29

Condition Variable
● A “place” to let threads wait for a certain event to occur while 

holding a lock  
● It has:

– Wait queue
– Three functions: wait, signal, and broadcast

● wait – sleep until the event happens
● signal – event/condition has occurred.  If wait queue nonempty, wake up one 

thread, otherwise do nothing
– Do not run the woken up thread right away
– FIFO determines who wakes up

● broadcast –  just like signal, except wake up all threads 
– In part 2, you implement all of these

● Typically associated with some logical condition in program



 30

Condition Variable (2)
● cond_wait(sthread_cond_t cond, 
sthread_mutex_t lock) 
– Should do the following atomically:

● Release the lock (to allow someone else to get in)
● Add current thread to the waiters for cond
● Block thread until awoken

– Read man page for pthread_cond_[wait|signal|
broadcast]

– Must be called while holding lock!  -- Why?



 31

Semaphores vs. CVs

This slide intentionally left blank 
to give you time to ponder this question deeply



 32

Semaphores vs. CVs

Semaphores
● Used in apps

● wait() does not always block 
the caller

● signal() either releases a 
blocked thread, if any, or 
increases sem. counter.

Condition variables
● Typically used in monitors

● Wait() always blocks caller

● Signal() either releases 
blocked thread(s), if any, or 
the signal is lost forever.



 33

Sample synchronization problem
Late-Night Pizza
● A group of students study for cse451 exam
● Can only study while eating pizza
● Each student thread executes the following:

– while (must_study) { 
pick up a piece of pizza; 
study while eating the pizza;

}
● If a student finds pizza is gone, the student goes to sleep until another 

pizza arrives
● First student to discover pizza is gone orders a new one.
● Each pizza has S slices.



 34

Late-Night Pizza
● Synchronize student threads and pizza delivery thread
● Avoid deadlock
● When out of pizza, order it exactly once
● No piece of pizza may be consumed by more than one 

student



 35

Semaphore / mutex solution

Student {
   while (must_study) {

P(pizza);
acquire(mutex);
num_slices--;
if (num_slices==0) 
  // took last slice
  V(deliver);
release(mutex);
study();

   }
}

shared data:
    semaphore_t pizza;  (counting sema, init to 0, represent 

          number of available pizza resources)
    semaphore_t deliver; (init to 1)
    int num_slices = 0;
    mutex_t mutex; (init to 1) // guard updating of num_slices

DeliveryGuy {
   while (employed) {
      P(deliver);
      make_pizza();
      acquire(mutex);
      num_slices=S;
      release(mutex);

   for (i=0; i < S; i++)
     V(pizza);
   

   }
}



 36

Condition Variable Solution

Student() {
  while(diligent) {
    mutex.lock();
    if( slices > 0 ) {
      slices--;
    }
    else {
      if( !has_been_ordered ) {
        order.signal(mutex);
        has_been_ordered = true;
      }
      deliver.wait(mutex);
    }
    mutex.unlock();
    Study();
  }
}

int slices=0;
Condition order, deliver;
Lock mutex;
bool has_been_ordered = false;

DeliveryGuy() {
  while(employed) {
    mutex.lock();
    order.wait(mutex);
    makePizza();
    slices = S;
    has_been_ordered = false;
    mutex.unlock();
    deliver.broadcast();
  }
}



 37

Monitors: preview
● One thread inside at a time
● Lock + a bunch of condition variables (CVs)
● CVs used to allow other threads to access the monitor while one 

thread waits for an event to occur

shared data

f() { … }

g() { … }

h() { … }

Entry set: queue of threads 
trying to enter the monitor

CV

operations (procedures)at most one thread 
in monitor at a time

CV
Wait sets



 38

Monitors in Java
● Each object has its own monitor
  Object o

● The Java monitor supports two types of 
synchronization:
– Mutual exclusion 
synchronized(o) { … }

– Cooperation 
     synchronized(o) { O.wait(); }
     synchronized(o) { O.notify[All](); }


