
Lecture 23: Distributed File Systems

23.0 Main Points
Examples of distributed file systems
Cache coherence protocols

23.1 Concepts
A distributed file system provides transparent access to
files stored on a remote disk

Themes:

Failures: what happens when server crashes, but client doesn't?
Or vice versa?

Performance => caching: use caching at both the clients and the
server to improve performance.

Cache coherence: how do we make sure each client sees most
up to date copy?

23.1 No caching
Simple approach: use RPC to forward every file system request
to remote server (Novell Netware, Mosaic).

Example operations: open, seek, read, write, close

Server implements each operation as it would for a local
request and sends back result to client

S

A B

cache

read
data

write

done

Advantage: server provides consistent view of file system to
both A and B.

Problems? Performance can be lousy:
 going over network is slower than going to local memory!
 lots of network traffic
 server can be a bottleneck -- what if lots of clients?

23.2 NFS (Sun Network File System)

Idea: Use caching to reduce network load

Cache file blocks, file headers, etc. at both clients and servers:
client memory
server memory

S

A B

cache

XX

X X

Advantage: if open/read/write/close can be done locally, no
network traffic.

Issues: failures and cache consistency.

23.2.1 Motivation, part 1: Failures

What if server crashes? Can client wait until server comes
back up, and continue as before?

1. Any data in server memory but not yet on disk can be lost.

2. Shared state across RPCs. Ex: open, seek, read. What if
server crashes after seek? Then when client does "read", it will
fail.

3. Message re-tries -- suppose server crashes after it does
UNIX "rm foo", but before acknowledgment? Message system
will retry -- send it again. How does it know not to delete it
again? (Could solve this with two-phase commit protocol, but
NFS takes a more ad hoc aproach -- sound familiar?)

What if client crashes?

1. Might lose modified data in client cache

23.2.2 NFS Protocol (part 1): stateless

1. Write-through caching -- when a file is closed, all modified
blocks are sent immediately to the server disk. To the client,
"close" doesn't return until all bytes are stored on disk.

2. Stateless protocol -- server keeps no state about client,
except as hints to help improve performance (ex: a cache)

Each read request gives enough information to do entire
operation - ReadAt(inumber, position), not Read(openfile).

When server crashes and restarts, can start again processing
requests immediately, as if nothing happened.

3. Operations are "idempotent": all requests are ok to repeat (all
requests done at least once). So if server crashes between disk
I/O and message send, client can resend message, server just
does operation all over again.

Read and write file block are easy -- just re-read or re-write
file block -- no side effects.

What about "remove"? NFS just ignores this -- does the
remove twice, second time returns an error if file not found.

4. Failures are transparent to client system

Is this a good idea? What should happen if server crashes?
Suppose you are an application, in the middle of reading a file,
and server crashes?

Options:

a. Hang until server comes back up (next week)?

b. Return an error? Problem is: most applications don't know
they are talking over the network -- we're transparent, right?
Many UNIX app's simply ignore errors! Crash if there's a
problem.

NFS does both options -- can select which one. Usually, hang
and only return error if really must -- if see "NFS stale file
handle", that's why.

23.2.3 Motivation, part 2: cache consistency

What if multiple clients are sharing the same files? Easy if
they are both reading -- each gets a copy of the file.

What if one is writing? How do updates happen?

Remember: NFS has write-through cache policy. If one client
modifies file, writes through to server.

How does other client find out about the change?

23.2.4 NFS protocol, part 2: weak consistency

In NFS, client polls server periodically, to check if file has
changed. Polls server if data hasn't been checked in last 3-30
seconds (exact timeout is tunable parameter).

S

A B

cache

X'X'

X' X

t=0: X' t=30:
X still ok?

X'X' on
 disk

Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout. They then
check server, and get new version.

What if multiple clients write to same file? In NFS, can get
either version (or parts of both). Completely arbitrary!

22.2.5 Sequential Ordering Constraints
Cache coherence: What should happen? What if one CPU
changes file, and before it's done, another CPU reads file?

Note that every operation takes time: actual read could occur
anytime between when system call is started, and when
system call returns.

time

read: A

read:B or C

read: B or C

read: A or B

write B

write C

A

Assume what we want is distributed system to behave exactly
the same as if all processes are running on a single UNIX
system.
 If read finishes before write starts, then get old copy
 If read starts after write finishes, then get new copy

 Otherwise: get either new or old copy.

Similarly, if write starts before another write finishes, may get
either old or new version. (Hence in above diagram, non-
deterministic as to which value you end up with!)

In NFS, if read starts more than 30 seconds after write finishes,
get new copy. Otherwise, who knows? Could get partial update

22.2.6 NFS Summary
NFS pros & cons:
 + simple
 + highly portable
 - sometimes inconsistent
 - doesn't scale to large # of clients

Might think NFS is really stupid, but Netscape does something
similar: caches recently seen pages, and refetches them if they
are too old. Nothing in the WWW to help with cache coherence.

22.3 Andrew File System
AFS (CMU, late 80's) -> DCE DFS (commercial product)

1. Callbacks: Server records who has copy of file

2. Write through on close
 If file changes, server is updated (on close)
 Server then immediately tells all those with the old copy.

3. Session semantics -- updates visible only on close.

In UNIX (single machine), updates visible immediately to other
programs who have the file open.

In AFS, everyone who has file open sees old version; anyone
who opens file again will see new version.

In AFS:
a. on open and cache miss: get file from server, set up callback
b. on write close: send copy to server; tells all clients with
copies, to fetch new version from server on next open

4. Files cached on local disk; NFS caches only in memory

S

A B

cache

X'X'

X' X

t=0: X'

X' on
 disk

callback

X: A,B

fetch new
version next
time X is
opened

X' X

What if server crashes? Lose all your callback state!

Reconstruct callback information from client -- go ask everyone
"who has which files cached"

AFS pros & cons:

Relative to NFS, less server load:
 + disk as cache -> more files can be cached locally
 + callbacks -> server not involved if file is read-only
 - on fast LANs, local disk is much slower than remote memory

In both AFS and NFS:

Central server is a bottleneck
 Performance bottleneck:
 - all data is written through to server
 - all cache misses go to server

 Availability bottleneck:
 - server is single point of failure
 Cost bottleneck:
 - server machines high cost relative to workstation

22.4 xFS: Serverless Network File Service
Key idea: file system as a parallel program; exploit opportunity
provided by fast LANs.

Four key ideas:
Cooperative caching
Write ownership cache coherence
Software RAID
Distributed control

22.4.1 Cooperative caching
Use remote memory to avoid going to disk (manage client
memory as a global shared resource)

a. on cache miss, get file from someone else's cache instead of
from disk
b. on replacement, if last copy of file, send to idle client, instead
of discarding

+ better hit rate for read-shared data
+ active clients get to use memory on idle clients

22.4.2 Write ownership cache coherence
Does server have to get all updates, to keep everything
consistent? Answer is no.

Almost all machines today have disks. Why write data back to
the server? Why not just put them on your local disk?

Key idea: a machine can "own" a file. Owner has the most up to
date copy; no one else has copy. Server keeps track of who

"owns" file; any request for the file goes to the server, who
then forwards to the owner.

Either:
 One "owned" copy of file (ex: file you are editing)
 Multiple "read-only" copies (ex: emacs executable)

To modify file, must make sure you have only copy. Once you
have only copy, ok to modify multiple times. If someone else
reads file, forward the up to date version and mark read-only.

Each file block in the cache has three states:
 invalid
 read-only
 owned (read-write)

invalid

owned
read
only

read

write

write by
another
CPU

write

read by another CPU

write by
another
CPU

Read file block:

 if (invalid)

 ask server who has up to date version

 fetch up to date version

 if any remote machine has it owned:

on remote machine: read-only

 on local machine: read-only

Write file block

 if (invalid)

 ask server who has up to date version,

and who has copies

 fetch up to date version

 else if (read-only)

 ask server who has copies

 if any remote machine has copy:

on remote machine: invalid

 on local machine: owned

Example: three CPU's, one server.

What happens?
 P1 read A
 P2 write B
 P3 read A
 P1 read A
 P2 write B
 P3 write A

Perfectly ok for that machine to keep modifying the file,
without telling the server. For instance, your machine is likely
to be the only machine with your sub-directory. You'd like it
to work if you move to another spot, but why tell the server
every time you modify a file, just because there is the
possibility someone might need it elsewhere.

22.4.3 Software RAID
We've made the availability story a whole lot worse. Now
pieces of the file system are spread all over everywhere. If
any machine in the system goes down, part of the file system
unavailable.

xFS solution: stripe data redundantly over multiple disks, using
software RAID. Each client writes its modifications to a log
stored on redundant stripe of disks.

On failure, others can reconstruct data from the other disks in
order to figure out missing data. Logging makes reconstruction
easy.

A detail: need to be able to find things on disk. Done as in LFS
via an inode/file header map, containing the location of every
inode on disk. (This map is spread over all machines, kept by
the last writer.)

Inode map is checkpointed to disk periodically. On failure,
read checkpoint from disk, then update from logs written after
checkpoint.

22.4.4 Distributed control
We've decentralized the cache, the disk, writes and reads. But
there's still a central server to record who has which copies of
data.

xFS solution: spread manager over all machines. If anyone
fails, poll clients to know who has what, and then shift its
responsibilities to a new client.

22.4.5 Summary
xFS: build large system out of large numbers of small,
unreliable components.

Key: everything dynamic -- data, metadata, control can live
anywhere, on any machine, in any memory, on any location on
disk. Also, this means easy to migrate to tape: anything can be
located anywhere.

Started with promise vs. reality of distributed systems: reality
is lower performance,

xFS is an example of how distributed systems will look in the
future: higher performance, higher availability than any
centralized system. Improves performance as you add more
machines: more CPUs, more DRAM, more disks, ought to mean
better performance, better availability, not worse!

Also: automatic reconfiguration. Machine goes down,
everything continues to work. Machine gets added, start using
its disk and CPU. (In hardware, called "hot swap" -- key to
high availability.)

Still some challenges: how do you upgrade software to new OS,
new version of xFS, new version of disk, CPU, etc., while system
continues to operate? Can we build systems that operate
continuously for a decade?

