
CSE 451: Operating Systems
Spring 2009

Memory Management

Steve Gribble

4/29/09 2

Memory Management

•  We’re beginning a new multiple-lecture topic
–  goals of memory management

•  convenient abstraction for programming
•  isolation between processes
•  allocate scarce memory resources between competing

processes, maximize performance (minimize overhead)
–  mechanisms

•  physical vs. virtual address spaces
•  page table management, segmentation policies
•  page replacement policies

4/29/09 3

Tools of memory management
•  Address Translation
•  Base and limit registers
•  Swapping
•  Paging
•  Page Tables
•  TLBs
•  Segmentation (and segment tables)
•  Page faults => page fault handling => virtual memory
•  The policies that govern the use of these mechanisms

4/29/09 4

Virtual Memory from 10,000 feet
•  The basic abstraction that the OS provides for memory

management is virtual memory (VM)
–  VM enables programs to execute without requiring their entire

address space to be resident in physical memory
•  program can also execute on machines with less RAM than it “needs”

–  many programs don’t need all of their code or data at once (or ever)
•  e.g., branches they never take, or data they never read/write
•  no need to allocate memory for it, OS should adjust amount allocated

based on its run-time behavior
–  virtual memory isolates processes from each other

•  one process cannot name addresses visible to others; each process
has its own isolated address space

•  VM requires hardware and OS support
–  MMU’s, TLB’s, page tables, …
–  Typically uses swapping as well

4/29/09 5

Virtual Addresses

•  To make it easier to manage memory of multiple
processes, make processes use virtual addresses
–  virtual addresses are independent of location in physical

memory (RAM) that referenced data lives
•  OS determines location in physical memory

–  instructions issued by CPU reference virtual addresses
•  e.g., pointers, arguments to load/store instruction, PC, …

–  virtual addresses are translated by hardware into physical
addresses (with some help from OS)

4/29/09 6

•  The set of virtual addresses a process can reference is its
address space
–  many different possible mechanisms for translating virtual

addresses to physical addresses
•  we’ll take a historical walk through them, ending up with

our current techniques
•  Note: We are not yet talking about paging, or virtual memory –

only that the program issues addresses in a virtual address
space, and these must be “adjusted” to reference memory (the
physical address space)
–  for now, think of the program as having a contiguous virtual

address space that starts at 0, and a contiguous physical
address space that starts somewhere else

Virtual Addresses (2)

4/29/09 7

Old technique #1: Fixed Partitions

•  Physical memory is broken up into fixed partitions
–  all partitions are equally sized, partitioning never changes
–  hardware requirement: base register

•  physical address = virtual address + base register
•  base register loaded by OS when it switches to a process

–  how can we ensure protection?
•  Advantages

–  simple, ultra-fast context switch
•  Problems

–  internal fragmentation: memory in a partition not used by its
owning process isn’t available to other processes

–  partition size problem: no one size is appropriate for all
processes

•  fragmentation vs. fitting large programs in partition

4/29/09 8

Fixed Partitions (K bytes)

partition 0

partition 1

partition 2

partition 3

partition 4

partition 5

0

K

2K

3K

4K

5K

physical memory

process 1

virtual address space
0

K

process 2

virtual address space
0

K

process 3

virtual address space
0

K

base
register 3K

base
register 0

base
register 5K

4/29/09 9

Virtual-to-physical address translation
with Fixed Partitions (K bytes)

partition 0

partition 1

partition 2

partition 3

partition 4

partition 5

0

K

2K

3K

4K

5K

physical memory

offset +
virtual address

3K
base register

4/29/09 10

Old technique #2: Variable Partitions

•  Obvious next step: physical memory is broken up into
variable-sized partitions
–  hardware requirements: base register, limit register
–  physical address = virtual address + base register
–  how do we provide protection?

•  if (physical address > base + limit) then… ?

•  Advantages
–  no internal fragmentation

•  simply allocate partition size to be just big enough for process
•  (assuming we know what that is!)

•  Problems
–  external fragmentation

•  as we load and unload jobs, holes are left scattered throughout
physical memory

4/29/09 11

Variable Partitions

physical memory
process 1

virtual address space

0 10

process 2

virtual address space
0

50

process 3

virtual address space
0

100

base
register 0

partition 0

partition 1

partition 2

partition 3

partition 4

0

limit
register 50

50

base
register 500

limit
register 10

500

510

base
register 800

limit
register 100

800

900

4/29/09 12

Address translation with
Variable Partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base
base register

P3’s size
limit register

<?

raise
 protection fault

no

yes

4/29/09 13

Dealing with fragmentation

•  Swap a program out
•  Re-load it, adjacent to another
•  Adjust its base register
•  “Lather, rinse, repeat”
•  Ugh

partition 0

partition 1

partition 2

partition 3

partition 4

partition 0

partition 1

partition 2
partition 3

partition 4

4/29/09 14

Modern technique: Paging

•  Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
…

page 3

4/29/09 15

User’s Perspective

•  Processes view memory as a contiguous address
space from bytes 0 through N
–  virtual address space (VAS)

•  In reality, virtual pages are scattered across physical
memory frames
–  virtual-to-physical mapping
–  this mapping is invisible to the program

•  Protection is provided because a program cannot
reference memory outside of it’s VAS
–  the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

4/29/09 16

Paging

•  Translating virtual addresses
–  a virtual address has two parts: virtual page number & offset
–  virtual page number (VPN) is index into a page table
–  page table entry contains page frame number (PFN)
–  physical address is PFN::offset

•  Page tables
–  managed by the OS
–  map virtual page number (VPN) to page frame number (PFN)

•  VPN is simply an index into the page table
–  one page table entry (PTE) per page in virtual address space

•  i.e., one PTE per VPN

17

Paging (K byte pages)

page frame 0

physical memory virtual address space

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

0

K

2K

3K

4K

5K

6K

7K

8K

page 0

page 1 pr
oc

es
s

0

0

K

2K

page table

page frame

0 3

1 5

virtual address space

page 0

page 1

pr
oc

es
s

1

0

K

2K

page table

page frame

0 7

1 5

2 -

3 1
page 2

page 3
3K

4K

?

page frame 8
9K

page frame 9
10K

4/29/09 18

Address translation with Paging

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

4/29/09 19

Paging example

•  assume 32 bit addresses
–  assume page size is 4KB (4096 bytes, or 212 bytes)
–  VPN is 20 bits long (220 VPNs), offset is 12 bits long

•  let’s translate virtual address 0x13325328

–  VPN is 0x13325, and offset is 0x328
–  assume page table entry 0x13325 contains value 0x03004

•  page frame number is 0x03004
•  VPN 0x13325 maps to PFN 0x03004

–  physical address = PFN::offset = 0x03004328

4/29/09 20

Page Table Entries (PTEs)

•  PTE’s control mapping
–  the valid bit says whether or not the PTE can be used

•  says whether or not a virtual address is valid
•  it is checked each time a virtual address is used

–  the reference bit says whether the page has been accessed
•  it is set when a page has been read or written to

–  the modify bit says whether or not the page is dirty
•  it is set when a write to the page has occurred

–  the protection bits control which operations are allowed
•  read, write, execute; user vs. supervisor

–  the page frame number determines the physical page
•  physical page start address = PFN << (#bits/page)

page frame number prot M R V
20 2 1 1 1

4/29/09 21

Paging Advantages

•  Easy to allocate physical memory
–  physical memory is allocated from free list of frames

•  to allocate a frame, just remove it from its free list
–  external fragmentation is not a problem!

•  complication for kernel contiguous physical memory allocation
–  many lists, each keeps track of free regions of particular size
–  regions’ sizes are multiples of page sizes
–  “buddy algorithm”

•  Easy to “page out” chunks of programs
–  all chunks are the same size (page size)
–  use valid bit to detect references to “paged-out” pages
–  also, page sizes are usually chosen to be convenient

multiples of disk block sizes

4/29/09 22

Paging Disadvantages

•  Can still have internal fragmentation
–  process may not use memory in exact multiples of pages

•  Memory reference overhead
–  2 references per address lookup (page table, then memory)
–  solution: use a hardware cache to absorb page table lookups

•  translation lookaside buffer (TLB) – next class

•  Memory required to hold page tables can be large
–  need one PTE per page in virtual address space
–  32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
–  4 bytes/PTE = 4MB per page table

•  OS’s typically have separate page tables per process
•  25 processes = 100MB of page tables

–  one solution: page the page tables (!!!)
–  another solution: multi-level page tables

