
CSE 451: Operating Systems
Spring 2009

Operating System
Components and Structure

Steve Gribble

4/9/09 1

4/9/09 2

OS structure

•  The OS sits between application programs and the
hardware
–  it mediates access and abstracts away ugliness
–  programs request services via exceptions (traps or faults)
–  devices request attention via interrupts

OS

P1

P2 P3
P4

D1
D2 D3

D4

exception
interrupt

dispatch

start i/o

4/9/09 3

Major OS components

•  processes
•  memory
•  I/O
•  secondary storage
•  file systems
•  protection
•  accounting
•  shells (command interpreter, or OS UI)
•  GUI
•  networking

4/9/09 4

Process management

•  An OS executes many kinds of activities:
–  users’ programs
–  batch jobs or scripts
–  system programs

•  print spoolers, name servers, file servers, network daemons, …

•  Each of these activities is encapsulated in a process
–  a process includes the execution context

•  PC, registers, VM, OS resources (e.g., open files), etc…
•  plus the program itself (code and data)

–  the OS’s process module manages these processes
•  creation, destruction, scheduling, …

4/9/09 5

Process / processor / procedure

•  Note that a program is totally passive
–  just bytes on a disk that contain instructions to be run

•  A process is an instance of a program being
executed by a (real or virtual) processor
–  at any instant, there may be many processes running copies

of the same program (e.g., an editor); each process is
separate and (usually) independent

–  Linux: ps -auwwx to list all processes

process A process B

code
stack
PC

registers

code
stack
PC

registers

page
tables

resources

page
tables

resources

4/9/09 6

States of a user process

running

ready

blocked

exception

interrupt dispatch

interrupt

4/9/09 7

Process operations

•  The OS provides the following kinds of operations on
processes (I.e. the process abstraction interface):
–  create a process
–  delete a process
–  suspend a process
–  resume a process
–  clone a process
–  inter-process communication
–  inter-process synchronization
–  create/delete a child process (subprocess)

4/9/09 8

Memory management

•  The primary memory (or RAM) is the directly
accessed storage for the CPU
–  programs must be stored in memory to execute
–  memory access is fast (e.g., 60 ns to load/store)

•  but memory doesn’t survive power failures

•  OS must:
–  allocate memory space for programs (explicitly and implicitly)
–  deallocate space when needed by rest of system
–  maintain mappings from physical to virtual memory

•  through page tables
–  decide how much memory to allocate to each process

•  a policy decision
–  decide when to remove a process from memory

•  also policy

4/9/09 9

I/O

•  A big chunk of the OS kernel deals with I/O
–  Millions of lines in Windows/XP (including drivers)
–  70% of Linux code

•  The OS provides a standard interface between
programs (user or system) and devices
–  file system (disk), sockets (network), frame buffer (video)

•  Device drivers are the routines that interact with
specific device types
–  encapsulates device-specific knowledge
–  e.g., how to initialize a device, how to request I/O, how to

handle interrupts or errors
–  examples: SCSI device drivers, Ethernet card drivers, video

card drivers, sound card drivers, …
•  Note: Windows has ~35,000 device drivers!

4/9/09 10

Secondary storage

•  Secondary storage (disk, SSD) is persistent memory
–  survives power failures (hopefully)

•  Routines that interact with disks are typically at a very
low level in the OS
–  used by many components (file system, VM, …)
–  handle scheduling of disk operations, head movement, error

handling, and often management of space on disks

•  Usually independent of file system
–  although there may be cooperation
–  file system knowledge of device details can help optimize

performance
•  e.g., place related files close together on disk

4/9/09 11

File systems

•  Secondary storage devices are crude and awkward
–  e.g., “write 4096 byte block to sector 12”

•  File system: a convenient abstraction
–  defines logical objects like files and directories

•  hides details about where on disk files live
–  as well as operations on objects like read and write

•  read/write byte ranges instead of blocks

•  A file is the basic long-term storage unit
–  file = named collection of persistent information

•  A directory is just a special kind of file
–  directory = named file that contains names of other files and

metadata about those files (e.g., file size)

•  Note: Sequential byte stream is but one possibility!

4/9/09 12

File system operations

•  The file system interface defines standard operations:
–  file (or directory) creation and deletion
–  manipulation of files and directories (read, write, extend,

rename, protect)
–  copy
–  lock

•  File systems also provide higher level services
–  accounting and quotas
–  backup (must be incremental and online!)
–  (sometimes) indexing or search
–  (sometimes) file versioning

4/9/09 13

Protection

•  Protection is a general mechanism used throughout
the OS
–  all resources needed to be protected

•  memory
•  processes
•  files
•  devices
•  …

–  protection mechanisms help to detect and contain errors, as
well as preventing malicious destruction

4/9/09 14

Command interpreter (shell)

•  A particular program that handles the interpretation of
users’ commands and helps to manage processes
–  user input may be from keyboard (command-line interface),

from script files, or from the mouse (GUIs)
–  allows users to launch and control new programs

•  On some systems, command interpreter may be a
standard part of the OS (e.g., MSDOS, Apple II)

•  On others, it’s just non-privileged code that provides
an interface to the user
–  e.g., bash/csh/tcsh/zsh on UNIX

•  On others, there may be no command language
–  e.g., MacOS

4/9/09 15

OS structure

•  It’s not always clear how to stitch OS modules
together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

4/9/09 16

OS structure

•  An OS consists of all of these components, plus:
–  many other components
–  system programs (privileged and non-privileged)

•  e.g., bootstrap code, the init program, …

•  Major issue:
–  how do we organize all this?
–  what are all of the code modules, and where do they exist?
–  how do they cooperate?

•  Massive software engineering and design problem
–  design a large, complex program that:

•  performs well, is reliable, is extensible, is backwards
compatible, …

4/9/09 17

Early structure: Monolithic

•  Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

everything

user programs

hardware

OS

4/9/09 18

Monolithic design

•  Major advantage:
–  cost of module interactions is low (procedure call)

•  Disadvantages:
–  hard to understand
–  hard to modify
–  unreliable (no isolation between system modules)
–  hard to maintain

•  What is the alternative?
–  find a way to organize the OS in order to simplify its design

and implementation

4/9/09 19

Layering

•  The traditional approach is layering
–  implement OS as a set of layers
–  each layer presents an enhanced ‘virtual machine’ to the layer above

•  The first description of this approach was Dijkstra’s THE system
–  Layer 5: Job Managers

•  Execute users’ programs
–  Layer 4: Device Managers

•  Handle devices and provide buffering
–  Layer 3: Console Manager

•  Implements virtual consoles
–  Layer 2: Page Manager

•  Implements virtual memories for each process
–  Layer 1: Kernel

•  Implements a virtual processor for each process
–  Layer 0: Hardware

•  Each layer can be tested and verified independently

4/9/09 20

Problems with layering

•  Imposes hierarchical structure
–  but real systems are more complex:

•  file system requires VM services (buffers)
•  VM would like to use files for its backing store

–  strict layering isn’t flexible enough

•  Poor performance
–  each layer crossing has overhead associated with it

•  Disjunction between model and reality
–  systems modeled as layers, but not really built that way

4/9/09 21

Hardware Abstraction Layer

•  An example of layering in modern operating
systems

•  Goal: separates hardware-specific routines
from the “core” OS

–  Provides portability
–  Improves readability

Core OS
(file system,
scheduler,

system calls)

Hardware Abstraction
Layer

(device drivers,
assembly routines)

4/9/09 22

Microkernels

•  Popular in the late 80’s, early 90’s
–  recent resurgence of popularity for small devices

•  Goal:
–  minimize what goes in kernel
–  organize rest of OS as user-level processes

•  This results in:
–  better reliability (isolation between components)
–  ease of extension and customization
–  poor performance (user/kernel boundary crossings)

•  First microkernel system was Hydra (CMU, 1970)
–  follow-ons: Mach (CMU), Chorus (French UNIX-like OS),

and in some ways NT (Microsoft), OS X (Apple)

4/9/09 23

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection
processor

control

file system

threads

network

scheduling
paging

firefox powerpoint

apache

user m
ode

K
ernel

m
ode

photoshop
itunes word

4/9/09 24

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File
Systems

Memory
Manager

Process
Manager

Network
Support

Device
Drivers

Interrupt
Handlers

Boot &
Init

Java Photoshop Firefox

O
pe

ra
tin

g
Sy

st
em

 Portable
U

se
r A

pp
s

Acrobat

The Sanitized Picture of OS Structure

4/9/09 25

Summary and Next Time

•  Summary
–  OS design has been a evolutionary process of trial and error. Probably

more error than success
–  Successful OS’s designs have run the spectrum from monolithic, to layered,

to micro kernels, to virtual machines
–  The role and design of an OS is still evolving
–  It is impossible to pick one “correct” way to structure an OS

•  Next Time
–  Processes, one of the most fundamental pieces in an OS
–  What is a process, what does it do, and how does it do it

