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Administrivia 

•  Reminders: 
–  sign up for class mailing list! 
–  homework #1 is out, due on Monday 
–  project #0 is out, due in 9 days (Apr 10) 

•  project #0 should be done solo 
–  other projects will be done in teams of 2 

•  Start shopping for your project partner 
–  no class on Friday 

•  Office hours are posted 
–  Ryan will be holding his this week 
–  Steve, Sean will start next week 
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•  Processing power 
–  doubling every 18 months 
–  60% improvement each year 
–  factor of 100 every decade 

•  Current generation – everything is multicore: 
–  UltraSPARC T2 (Sun):  8 cores, 64 threads 
–  Intel “Nehalem”:  8 cores, 16 threads 

Even coarse architectural trends 
impact tremendously the design of systems 
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•  Primary memory capacity 
–  same story, same reason (Moore’s Law) 

•  1978:  512K of VAX-11/780 memory for $30,000 
•  today:   
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•  Disk capacity, 1975-1989 
–  doubled every 3+ years 
–  25% improvement each year 
–  factor of 10 every decade 
–  Still exponential, but far less rapid than CPU performance 

•  Disk capacity since 1990 
–  doubling every 12 months 
–  100% improvement each year 
–  factor of 1000 every decade 
–  10x as fast as processor performance! 
–  Today:  1TB disk for $150 
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Newly arrived, and coming soon… 

•  Solid state storage (SSD) 
–  promises 10,000 - 100,000 random IOs per second 
–  700 MB/s transfer rates 
–  still costly, but quickly riding Moore’s law 

•  $5-10 per GB, compared to hard drives $0.10 per GB 

•  Phase-change memory (PRAM) 
–  promises speed of DRAM, but non-volatile 
–  still experimental, though early product shipping 
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•  Optical bandwidth today 
–  Doubling every 9 months 
–  150% improvement each year 
–  Factor of 10,000 every decade 
–  10x as fast as disk capacity! 
–  100x as fast as processor performance!! 

•  What are some of the implications of these trends? 
–  Just one example:  We have always designed systems so 

that they “spend” processing power in order to save “scarce” 
storage and bandwidth! 

–  What else? 
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Lower-level architecture affects the OS 
even more dramatically 

•  Operating system functionality is dictated, at least in 
part, by the underlying hardware architecture 
–  includes instruction set  (synchronization, I/O, …) 
–  also hardware components like MMU or DMA controllers 

•  Architectural support can vastly simplify (or 
complicate!) OS tasks 
–  e.g.: early PC operating systems (DOS, MacOS) lacked 

support for virtual memory, in part because at that time PCs 
lacked necessary hardware support 
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Architectural features affecting OS’s 

•  These features were built primarily to support OS’s: 
–  timer (clock) operation 
–  synchronization instructions (e.g., atomic test-and-set) 
–  memory protection 
–  I/O control operations 
–  interrupts and exceptions 
–  protected modes of execution (kernel vs. user) 
–  protected instructions 
–  system calls (and software interrupts) 
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Protected instructions 

•  some instructions are restricted to the OS 
–  known as protected or privileged instructions 

•  e.g., only the OS can: 
–  directly access I/O devices (disks, network cards) 
–  manipulate memory state management 

•  page table pointers, TLB loads, etc. 
–  manipulate special ‘mode bits’ 

•  interrupt priority level 
–  halt instruction 

•  Why? 
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OS protection 

•  So how does the processor know if a protected 
instruction should be executed? 
–  the architecture must support at least two modes of 

operation: kernel mode and user mode 
•  VAX, x86 support 4 protection modes 
•  why more than 2? 

–  mode is set by status bit in a protected processor register 
•  user programs execute in user mode 
•  OS executes in kernel mode   (OS == kernel) 

•  Protected instructions can only be executed in the 
kernel mode 
–  what happens if user mode executes a protected instruction? 
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Crossing protection boundaries 

•  So how do user programs do something privileged? 
–  e.g., how can you write to a disk if you can’t do I/O 

instructions? 

•  User programs must call an OS procedure 
–  OS defines a sequence of system calls 
–  how does the user-mode to kernel-mode transition happen? 

•  There must be a system call instruction, which: 
–  causes an exception (throws a software interrupt), which 

vectors to a kernel handler 
–  passes a parameter indicating which system call to invoke 
–  saves caller’s state (regs, mode bit) so they can be restored 
–  OS must verify caller’s parameters (e.g., pointers) 
–  must be a way to return to user mode once done 
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A kernel crossing illustrated 

user mode 
kernel mode 

Firefox: read( ) 

trap to kernel 
mode; save app 

state 

find read( ) 
handler in 
vector table 

restore app 
state, return to 

user mode, 
resume 

trap handler 

read( ) kernel routine 
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System call issues 

•  What would happen if kernel didn’t save state? 
•  Why must the kernel verify arguments? 
•  How can you reference kernel objects as arguments 

or results to/from system calls? 
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Memory protection 

•  OS must protect user programs from each other 
–  maliciousness, ineptitude 

•  OS must also protect itself from user programs 
–  integrity and security 
–  what about protecting user programs from OS? 

•  Simplest scheme: base and limit registers 
–  are these protected? 

Prog A 

Prog B 

Prog C 

base reg 
limit reg 

base and limit registers 
are loaded by OS before 

starting program 
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More sophisticated memory protection 

•  coming later in the course 
•  paging, segmentation, virtual memory 

–  page tables, page table pointers 
–  translation lookaside buffers (TLBs) 
–  page fault handling 
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OS control flow 

•  after the OS has booted, all entry to the kernel 
happens as the result of an event 
–  event immediately stops current execution 
–  changes mode to kernel mode, event handler is called 

•  kernel defines handlers for each event type 
–  specific types are defined by the architecture 

•  e.g.: timer event, I/O interrupt, system call trap 
–  when the processor receives an event of a given type, it 

•  transfers control to handler within the OS 
•  handler saves program state (PC, regs, etc.) 
•  handler functionality is invoked 
•  handler restores program state, returns to program 
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Interrupts and exceptions 

•  Two main types of events: interrupts and exceptions 
–  exceptions are caused by software executing instructions 

•  e.g., the x86 ‘int’ instruction 
•  e.g., a page fault, write to a read-only page 
•  an expected exception is a “trap”, unexpected is a “fault” 

–  interrupts are caused by hardware devices 
•  e.g., device finishes I/O 
•  e.g., timer fires 
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I/O 

•  Issues: 
–  how does the kernel start an I/O? 

•  special I/O instructions 
•  memory-mapped I/O 

–  how does the kernel notice an I/O has finished? 
•  polling 
•  Interrupts 

–  how does the kernel exchange data with an I/O device? 
•  programmed I/O  (PIO) 
•  direct memory access  (DMA) 



Asynchronous I/O 

•  Interrupts are basis for asynchronous I/O 
–  device performs an operation asynchronous to CPU 
–  device sends an interrupt signal on bus when done 
–  in memory, a vector table contains list of addresses of kernel 

routines to handle various interrupt types 
•  who populates the vector table, and when? 

–  CPU switches to address indicated by vector specified by 
interrupt signal 

•  What’s the advantage of asynchronous I/O? 
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Timers 

•  How can the OS prevent runaway user programs 
from hogging the CPU (infinite loops?) 
–  use a hardware timer that generates a periodic interrupt 
–  before it transfers to a user program, the OS loads the timer 

with a time to interrupt 
•  “quantum”: how big should it be set? 

–  when timer fires, an interrupt transfers control back to OS 
•  at which point OS must decide which program to schedule next 
•  very interesting policy question: we’ll dedicate a class to it 

•  Should the timer be privileged? 
–  for reading or for writing? 
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Synchronization 

•  Interrupts cause a wrinkle: 
–  may occur any time, causing code to execute that interferes 

with code that was interrupted 
–  OS must be able to synchronize concurrent processes 

•  Synchronization: 
–  guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically 
–  one method: turn off interrupts before the sequence, execute 

it, then re-enable interrupts 
•  architecture must support disabling interrupts 
•  doesn’t work so well on multi-processor machines 

–  another method:  have special complex atomic instructions 
•  read-modify-write 
•  test-and-set 
•  load-linked store-conditional 
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“Concurrent programming” 

•  Management of concurrency and asynchronous 
events is biggest difference between “systems 
programming” and “traditional application 
programming” 
–  modern “event-oriented” application programming is a 

middle ground 

•  Arises from the architecture 
–  Can be sugar-coated, but cannot be totally abstracted away 

•  Huge intellectual challenge 
–  Unlike vulnerabilities due to buffer overruns, which are just 

sloppy programming 
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Architectures are still evolving 

•  New features are still being introduced to meet modern demands 
–  Support for virtual machine monitors 
–  Hardware transaction support (to simplify parallel programming) 
–  Support for security (encryption, trusted modes) 
–  Increasingly sophisticated video / graphics 
–  Other stuff that hasn’t been invented yet… 

•  In current technology transistors are free – CPU makers are 
looking for new ways to use transistors to make their chips more 
desirable. 

•  Intel’s big challenge:  finding applications that require new 
hardware support, so that you will want to upgrade to a new 
computer to run them. 


