
CSE 451: Operating Systems
Spring 2009

Architectural Support for
Operating Systems

Steve Gribble

4/9/09 1

Administrivia

•  Reminders:
–  sign up for class mailing list!
–  homework #1 is out, due on Monday
–  project #0 is out, due in 9 days (Apr 10)

•  project #0 should be done solo
–  other projects will be done in teams of 2

•  Start shopping for your project partner
–  no class on Friday

•  Office hours are posted
–  Ryan will be holding his this week
–  Steve, Sean will start next week

4/9/09 2

4/9/09 3

•  Processing power
–  doubling every 18 months
–  60% improvement each year
–  factor of 100 every decade

•  Current generation – everything is multicore:
–  UltraSPARC T2 (Sun): 8 cores, 64 threads
–  Intel “Nehalem”: 8 cores, 16 threads

Even coarse architectural trends
impact tremendously the design of systems

4/9/09 4

•  Primary memory capacity
–  same story, same reason (Moore’s Law)

•  1978: 512K of VAX-11/780 memory for $30,000
•  today:

4/9/09 5

•  Disk capacity, 1975-1989
–  doubled every 3+ years
–  25% improvement each year
–  factor of 10 every decade
–  Still exponential, but far less rapid than CPU performance

•  Disk capacity since 1990
–  doubling every 12 months
–  100% improvement each year
–  factor of 1000 every decade
–  10x as fast as processor performance!
–  Today: 1TB disk for $150

4/9/09 6

Newly arrived, and coming soon…

•  Solid state storage (SSD)
–  promises 10,000 - 100,000 random IOs per second
–  700 MB/s transfer rates
–  still costly, but quickly riding Moore’s law

•  $5-10 per GB, compared to hard drives $0.10 per GB

•  Phase-change memory (PRAM)
–  promises speed of DRAM, but non-volatile
–  still experimental, though early product shipping

4/9/09 7

•  Optical bandwidth today
–  Doubling every 9 months
–  150% improvement each year
–  Factor of 10,000 every decade
–  10x as fast as disk capacity!
–  100x as fast as processor performance!!

•  What are some of the implications of these trends?
–  Just one example: We have always designed systems so

that they “spend” processing power in order to save “scarce”
storage and bandwidth!

–  What else?

4/9/09 8

Lower-level architecture affects the OS
even more dramatically

•  Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
–  includes instruction set (synchronization, I/O, …)
–  also hardware components like MMU or DMA controllers

•  Architectural support can vastly simplify (or
complicate!) OS tasks
–  e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

4/9/09 9

Architectural features affecting OS’s

•  These features were built primarily to support OS’s:
–  timer (clock) operation
–  synchronization instructions (e.g., atomic test-and-set)
–  memory protection
–  I/O control operations
–  interrupts and exceptions
–  protected modes of execution (kernel vs. user)
–  protected instructions
–  system calls (and software interrupts)

4/9/09 10

Protected instructions

•  some instructions are restricted to the OS
–  known as protected or privileged instructions

•  e.g., only the OS can:
–  directly access I/O devices (disks, network cards)
–  manipulate memory state management

•  page table pointers, TLB loads, etc.
–  manipulate special ‘mode bits’

•  interrupt priority level
–  halt instruction

•  Why?

4/9/09 11

OS protection

•  So how does the processor know if a protected
instruction should be executed?
–  the architecture must support at least two modes of

operation: kernel mode and user mode
•  VAX, x86 support 4 protection modes
•  why more than 2?

–  mode is set by status bit in a protected processor register
•  user programs execute in user mode
•  OS executes in kernel mode (OS == kernel)

•  Protected instructions can only be executed in the
kernel mode
–  what happens if user mode executes a protected instruction?

4/9/09 12

Crossing protection boundaries

•  So how do user programs do something privileged?
–  e.g., how can you write to a disk if you can’t do I/O

instructions?

•  User programs must call an OS procedure
–  OS defines a sequence of system calls
–  how does the user-mode to kernel-mode transition happen?

•  There must be a system call instruction, which:
–  causes an exception (throws a software interrupt), which

vectors to a kernel handler
–  passes a parameter indicating which system call to invoke
–  saves caller’s state (regs, mode bit) so they can be restored
–  OS must verify caller’s parameters (e.g., pointers)
–  must be a way to return to user mode once done

4/9/09 13

A kernel crossing illustrated

user mode
kernel mode

Firefox: read()

trap to kernel
mode; save app

state

find read()
handler in
vector table

restore app
state, return to

user mode,
resume

trap handler

read() kernel routine

4/9/09 14

System call issues

•  What would happen if kernel didn’t save state?
•  Why must the kernel verify arguments?
•  How can you reference kernel objects as arguments

or results to/from system calls?

4/9/09 15

Memory protection

•  OS must protect user programs from each other
–  maliciousness, ineptitude

•  OS must also protect itself from user programs
–  integrity and security
–  what about protecting user programs from OS?

•  Simplest scheme: base and limit registers
–  are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

4/9/09 16

More sophisticated memory protection

•  coming later in the course
•  paging, segmentation, virtual memory

–  page tables, page table pointers
–  translation lookaside buffers (TLBs)
–  page fault handling

4/9/09 17

OS control flow

•  after the OS has booted, all entry to the kernel
happens as the result of an event
–  event immediately stops current execution
–  changes mode to kernel mode, event handler is called

•  kernel defines handlers for each event type
–  specific types are defined by the architecture

•  e.g.: timer event, I/O interrupt, system call trap
–  when the processor receives an event of a given type, it

•  transfers control to handler within the OS
•  handler saves program state (PC, regs, etc.)
•  handler functionality is invoked
•  handler restores program state, returns to program

4/9/09 18

Interrupts and exceptions

•  Two main types of events: interrupts and exceptions
–  exceptions are caused by software executing instructions

•  e.g., the x86 ‘int’ instruction
•  e.g., a page fault, write to a read-only page
•  an expected exception is a “trap”, unexpected is a “fault”

–  interrupts are caused by hardware devices
•  e.g., device finishes I/O
•  e.g., timer fires

4/9/09 19

I/O

•  Issues:
–  how does the kernel start an I/O?

•  special I/O instructions
•  memory-mapped I/O

–  how does the kernel notice an I/O has finished?
•  polling
•  Interrupts

–  how does the kernel exchange data with an I/O device?
•  programmed I/O (PIO)
•  direct memory access (DMA)

Asynchronous I/O

•  Interrupts are basis for asynchronous I/O
–  device performs an operation asynchronous to CPU
–  device sends an interrupt signal on bus when done
–  in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
•  who populates the vector table, and when?

–  CPU switches to address indicated by vector specified by
interrupt signal

•  What’s the advantage of asynchronous I/O?

4/9/09 20

4/9/09 21

Timers

•  How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
–  use a hardware timer that generates a periodic interrupt
–  before it transfers to a user program, the OS loads the timer

with a time to interrupt
•  “quantum”: how big should it be set?

–  when timer fires, an interrupt transfers control back to OS
•  at which point OS must decide which program to schedule next
•  very interesting policy question: we’ll dedicate a class to it

•  Should the timer be privileged?
–  for reading or for writing?

4/9/09 22

Synchronization

•  Interrupts cause a wrinkle:
–  may occur any time, causing code to execute that interferes

with code that was interrupted
–  OS must be able to synchronize concurrent processes

•  Synchronization:
–  guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically
–  one method: turn off interrupts before the sequence, execute

it, then re-enable interrupts
•  architecture must support disabling interrupts
•  doesn’t work so well on multi-processor machines

–  another method: have special complex atomic instructions
•  read-modify-write
•  test-and-set
•  load-linked store-conditional

4/9/09 23

“Concurrent programming”

•  Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
–  modern “event-oriented” application programming is a

middle ground

•  Arises from the architecture
–  Can be sugar-coated, but cannot be totally abstracted away

•  Huge intellectual challenge
–  Unlike vulnerabilities due to buffer overruns, which are just

sloppy programming

4/9/09 24

Architectures are still evolving

•  New features are still being introduced to meet modern demands
–  Support for virtual machine monitors
–  Hardware transaction support (to simplify parallel programming)
–  Support for security (encryption, trusted modes)
–  Increasingly sophisticated video / graphics
–  Other stuff that hasn’t been invented yet…

•  In current technology transistors are free – CPU makers are
looking for new ways to use transistors to make their chips more
desirable.

•  Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them.

