
CSE 451: Operating Systems
Spring 2009

Lecture 17
Two-phase commit

Steve Gribble

6/1/09 1

6/1/09 2

A fundamental problem

•  Consider a client/server architecture
–  what happens to the service if a server crashes?

•  software failure, OS failure, hardware failure, power outage,
earthquake, …

•  Replication to the rescue
–  key idea: instead of having one server providing service to

clients, have multiple servers providing the same service
•  each of the servers are called replicas
•  given N replicas, if one crashes, N-1 can still provide service

–  this assumes independent failures

–  replication therefore improves availability
•  however, it introduces a new problem: keeping replicas

consistent with each other in the face of updates

6/1/09 3

Some quick math for the curious

•  assume N replicas
–  assume a specified mean time between failure (MTBF)

•  with exponentially distributed failure arrivals
•  (in other words, a completely random process)

–  assume a specified mean time to repair (MTTR)

•  what is the reliability of the overall system?

–  MTBFsystem α MTBFreplica
N

 MTTRreplica

–  note that repair is a crucial part of the system!

6/1/09 4

The Replica Consistency problem

•  Imagine we have two “bank” servers, and a client that updates
its bank account
–  naïve replication strategy: client updates a random server. After

update, the randomly chosen server propagates change to other
server.

•  master/slave replication

S1 S2

client

1. update

2. OK

3. propagate

•  what are all the things that can go wrong?

6/1/09 5

What are we to do?

•  One (of many) problems is that servers can have
different views of the data at the same time
–  this is the very definition of inconsistency!
–  even worse, simultaneous updates can stomp on each other

•  inconsistency is never resolved

•  Idea: update both servers at once?

S1 S2

client

1. update

2. OK

1. update

2. OK

6/1/09 6

But there are races…

•  Two clients issuing updates at same time
–  messages may arrive in different orders at different servers

•  e.g. message #1 = “turn on light”, message #2 = “turn off light”
•  what’s the state of the light switch at each server?

•  How did we deal with races in multithreaded code?
–  critical sections, mutual exclusion via locks:

S1 S2

client

1. lock 1. lock

2. OK
2. OK

S1 S2

client

3. update 3. update

4. OK
4. OK

6/1/09 7

More problems…

•  But what about:
–  network failure, or network delays
–  client failure
–  server failure
–  deadlock

Consensus

•  Updating replicas is an example of a more general
problem --- consensus in a distributed system
–  conditions under which consensus is possible depends on

assumptions and requirements
–  assumptions:

•  network: synchronous, asynchronous, or partially synchronous?
•  participants: failure-free, fail-stop, or byzantine?

–  requirements:
•  can you tolerate temporary periods of inconsistency?
•  should the system be wait-free, or is it OK for some processes

to block waiting for some other process (or the network) to
recover?

6/1/09 8

Bad news, good news

•  The bad news: the real world is messy
–  networks are asynchronous

•  wait-free consensus provably impossible in an asynchronous
network, even if you assume fail-stop failures, and even if you
assume at most a single failure!

–  failures are byzantine, not fail-stop
•  must assume adversarial behavior

•  The good news: we can cope
–  OK, networks are really partially synchronous (timing bounds

exist in practice)
–  OK, can assume fail-stop in some scenarios (e.g., within a

Google data center)
–  OK, can handle byzantine failures with some cost and

engineering

6/1/09 9

6/1/09 10

Two-phase commit

•  Goal: update all replicas atomically
–  either everybody commits update, or everybody aborts
–  no inconsistencies (including races from multiple clients)
–  even in the face of network and host failures

•  Assumptions
–  synchronous network
–  assume no byzantine failures (fail-stop)
–  willing to wait (block until recovery) in some cases

•  What do we get?
–  “weak termination:” if there are no failures, then all

processes eventually decide
–  but not “strong termination:” all non-faulty processes

eventually decide (need three-phase commit for this)

Terminology

•  coordinator
–  software entity that shepherds process
–  client in our example, not necessarily always so

•  replica
–  software entity to be updated by coordinator
–  coordinator can be a replica as well, if you like

•  ready to commit
–  side-effects of update are safely stored on durable,

secondary storage
–  if a replica is ready to commit, then even if it crashes, it can

continue with two-phase commit after it recovers

6/1/09 11

6/1/09 12

The Protocol

•  Phase 1:
–  coordinator sends a PREPARE message to each replica
–  coordinator waits for all participants to vote
–  each participant:

•  votes PREPARED if it is ready to commit
–  also locks data item(s) being updated

•  votes NO for any reason
–  including inability to grab a lock

•  may delay voting arbitrarily…
•  Phase 2:

–  if coordinator receives PREPARED from all replicas, it decides to
commit. if not, it decides to abort.

•  at this point, the “transaction” or update is over
–  coordinator sends its decision to all participants

•  COMMIT or ABORT
–  participant marks decision, releases lock

–  participants acknowledge receipt with DONE

6/1/09 13

Outcome #1: COMMIT

coord

coord
coord

coord
coord
replica

PREPARE
PREPARED

COMMIT

DONE

6/1/09 14

Outcome #2: ABORT

coord

coord
coord

coord
coord
replica

PREPARE
NO

ABORT

DONE

6/1/09 15

Performance

•  In the absence of failures, 2PC makes a total of 1.5
round-trips of messages before decision is made
–  prepare
–  vote to prepare
–  commit/abort
–  (note that the “DONE” is just for bookkeeping, it doesn’t

affect response time)

6/1/09 16

Uncertainty

•  Before it votes, a replica can unilateraily abort
•  After it votes PREPARED and before it receives the

coordinator’s decision, a replica is in an uncertain
condition.
–  it can’t either commit or abort until it hears from coordinator

coord
coord

coord
coord

coord
replica

PREPARE
PREPARED

COMMIT

DONE

uncertain

6/1/09 17

More uncertainty

•  Note that the coordinator is never uncertain
–  it can always unilaterally abort, until it sends out a COMMIT

•  If a participant fails or is partitioned during uncertain
period…
–  it must contact coordinator to discover decision after

recovery or network repair
•  implies coordinator must keep track of decisions
•  for how long?

6/1/09 18

Failure handling

•  Failure is detected with timeouts
–  must eventually rely on timeouts in a distributed system

•  If participant times out waiting for PREPARE
–  it can simply abort

•  If coordinator times out waiting for a vote
–  it can simply abort

•  If participant times out waiting for a decision
–  it becomes “blocked”

•  punt to some other resolution protocol
•  simplest one: wait for coordinator to recover

•  If coordinator times out waiting for a done
–  ?

