CSE 451: Operating Systems Spring 2009

Redundant Arrays of Inexpensive Disks (RAID)

Steve Gribble

The challenge

- Disk transfer rates are improving
 - but much less fast than CPU performance
- We can use multiple disks to improve performance
 - stripe files across multiple disks
 - place parts of each file on a different disk
 - with this, we can use parallel I/O to improve performance
- But, striping reduces reliability!
 - 100 disks have 1/100th the MTBF (mean time between failures) of one disk
- So, we need striping for performance, but we need something to help with reliability / availability
 - to improve reliability, we can add redundant data to the disks, in addition to striping

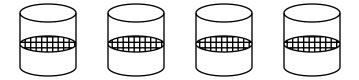
Refresher: What's parity?

- To each byte, add a bit whose value is set so that the total number of 1's is even
- Any single missing bit can be reconstructed
 - more complex schemes (e.g., based on Hamming codes) can detect multiple bit errors and correct single bit errors.
 Called ECC (error correcting code) memory.

RAID

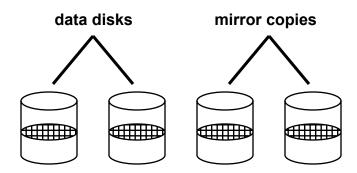
- A RAID is a Redundant Array of Inexpensive Disks
- Disks are small and cheap, so it's easy to put lots of disks (10s to 100s) in one box for increased storage, performance, and availability
- Data plus some redundant information is striped across the disks in some way
- How striping is done is key to performance and reliability

Some RAID tradeoffs

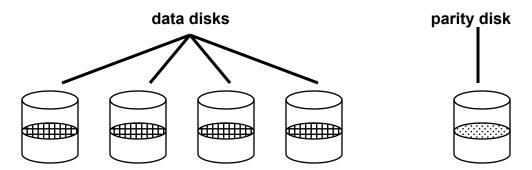

Granularity

- fine-grained: stripe each file over all disks
 - high throughput for the file
 - limits transfer to 1 file at a time
- course-grained: stripe each file over only a few disks
 - limits throughput for 1 file
 - allows concurrent access to multiple files

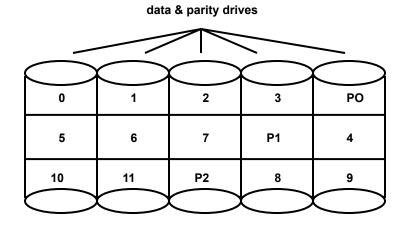
Redundancy


- uniformly distribute redundancy information on disks
 - avoids load-balancing problems
- concentrate redundancy information on a small # of disks
 - partition the disks into data disks and redundancy disks
 - simpler

- RAID Level 0 is a <u>non-redundant</u> disk array
- Files are striped across disks, no redundant info
- High read throughput
- Best write throughput (no redundant info to write)
- Any disk failure results in data loss


5/20/09

- RAID Level 1: mirrored disks
- Files are striped across half the disks
- Data is written to two places
 - a data disk and a mirror disk
- On failure, just use the surviving disk
- 2x space expansion


RAID Levels 2, 3, and 4

- RAID levels 2, 3, and 4 use <u>ECC</u> or <u>parity</u> disks
 - e.g., each byte on the parity disk is a parity function of the corresponding bytes on all the other disks
 - details between the different levels have to do with kind of ECC used, and whether it is bit-level or block-level
- A read accesses all the data disks, a write accesses all the data disks plus the parity disk
- On disk failure, read the remaining disks plus the parity disk to compute the missing data

5/20/09

- RAID Level 5 uses <u>block interleaved distributed parity</u>
- Like parity scheme, but distribute the parity info (as well as data) over all disks
 - for each block, one disk holds the parity, and the other disks hold the data
- Significantly better performance
 - parity disk is not a hot spot

File Block Numbers

- Basically like RAID 5 but with replicated parity blocks so that it can survive two disk failures.
- Useful for larger disk arrays where multiple failures are more likely.

5/20/09

Example RAID Storage

Promise 3U rack-mountable 16-disk RAID Storage System

Hot swappable drives

Dual controllers with 4 host interface ports for reliability

Can be ganged together into larger units