
CSE 451: Operating Systems
Spring 2009

File Systems

Steve Gribble

5/15/09 2

File systems

•  The concept of a file system is simple
–  the implementation of the abstraction for secondary storage

•  abstraction = files
–  logical organization of files into directories

•  the directory hierarchy
–  sharing of data between processes, people and machines

•  protection (access control), consistency, synchronization, …

5/15/09 3

Files

•  A file is a collection of data with some properties
–  contents, size, owner, last read/write time, protection …

•  Files may also have types
–  understood by file system

•  device, directory, symbolic link
–  understood by other parts of OS or by runtime libraries

•  executable, dll, source code, object code, text file, …
•  Type can be encoded in the file’s name or contents

–  windows encodes type in name
•  .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

–  old Mac OS stored the name of the creating program along
with the file

–  unix has a smattering of both
•  in content via magic numbers or initial characters (e.g., #!)

5/15/09 4

Basic operations

NT
•  CreateFile(name, CREATE)

•  CreateFile(name, OPEN)

•  ReadFile(handle, …)

•  WriteFile(handle, …)

•  FlushFileBuffers(handle, …)

•  SetFilePointer(handle, …)

•  CloseHandle(handle, …)

•  DeleteFile(name)

•  CopyFile(name)

•  MoveFile(name)

Unix
•  create(name)

•  open(name, mode)

•  read(fd, buf, len)

•  write(fd, buf, len)

•  sync(fd)

•  seek(fd, pos)

•  close(fd)

•  unlink(name)

•  rename(old, new)

5/15/09 5

File access methods

•  Some file systems provide different access methods
that specify ways the application will access data
–  sequential access

•  read bytes one at a time, in order
–  direct access

•  random access given a block/byte #
–  record access

•  file is array of fixed- or variable-sized records
–  indexed access

•  FS contains an index to a particular field of each record in a file
•  apps can find a file based on value in that record (similar to DB)

•  Why do we care about distinguishing sequential from
direct access?
–  what might the FS do differently in these cases?

5/15/09 6

Directories

•  Directories provide:
–  a way for users to organize their files
–  a convenient file name space for both users and FS’s

•  Most file systems support multi-level directories
–  naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)

•  Most file systems support the notion of current
directory
–  absolute names: fully-qualified starting from root of FS

bash$ cd /usr/local

–  relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /usr/local/bin)

5/15/09 7

Directory internals

•  A directory is typically just a file that happens to
contain special metadata
–  directory = list of (name of file, file attributes)
–  attributes include such things as:

•  size, protection, location on disk, creation time, access time, …
–  the directory list is usually unordered (effectively random)

•  when you type “ls”, the “ls” command sorts the results for you

5/15/09 8

Path name translation

•  Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

•  What goes on inside the file system?
–  open directory “/” (well known, can always find)
–  search the directory for “one”, get location of “one”
–  open directory “one”, search for “two”, get location of “two”
–  open directory “two”, search for “three”, get loc. of “three”
–  open file “three”
–  (of course, permissions are checked at each step)

•  FS spends lots of time walking down directory paths
–  this is why open is separate from read/write (session state)
–  OS will cache prefix lookups to enhance performance

•  /a/b, /a/bb, /a/bbb all share the “/a” prefix

5/15/09 9

Protection systems

•  FS must implement some kind of protection system
–  to control who can access a file (user)
–  to control how they can access it (e.g., read, write, or exec)

•  More generally:
–  generalize files to objects (the “what”)
–  generalize users to principals (the “who”, user or program)
–  generalize read/write to actions (the “how”, or operations)

•  A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed
–  e.g., you can read or write your files, but others cannot
–  e.g., your can read /etc/motd but you cannot write to it

5/15/09 10

Model for representing protection

•  Two different ways of thinking about it:
–  access control lists (ACLs)

•  for each object, keep list of principals and principals’ allowed
actions

–  capabilities
•  for each principal, keep list of objects and principal’s allowed

actions

•  Both can be represented with the following matrix:

/etc/passwd /home/gribble /home/guest

root rw rw rw

gribble r rw r

guest r
principals

objects

ACL

capability

5/15/09 11

ACLs vs. Capabilities

•  Capabilities are easy to transfer
–  they are like keys: can hand them off
–  they make sharing easy

•  ACLs are easier to manage
–  object-centric, easy to grant and revoke

•  to revoke capability, need to keep track of principals that have it
•  hard to do, given that principals can hand off capabilities

•  ACLs grow large when object is heavily shared
–  can simplify by using “groups”

•  put users in groups, put groups in ACLs
•  you are all in the “VMware powerusers” group on Windows

–  additional benefit
•  change group membership, affects ALL objects that have this

group in its ACL

5/15/09 12

The original Unix file system

•  Dennis Ritchie and Ken Thompson, Bell Labs, 1969
•  “UNIX rose from the ashes of a multi-organizational

effort in the early 1960s to develop a dependable
timesharing operating system” -- Multics

•  Designed for a “workgroup” sharing a single system
•  Did its job exceedingly well

–  Although it has been stretched in many directions and made
ugly in the process

•  A wonderful study in engineering tradeoffs

5/15/09 13

(old) Unix disks are divided into five parts

•  Boot block
–  can boot the system by loading from this block

•  Superblock
–  specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

•  i-node area
–  contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

•  File contents area
–  fixed-size blocks; head of freelist is in the superblock

•  Swap area
–  holds processes that have been swapped out of memory

5/15/09 14

So …

•  You can attach a disk to a dead system …
•  Boot it up …
•  Find, create, and modify files …

–  because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

–  by convention, the second i-node is the root directory of the
volume

5/15/09 15

i-node format

•  User number
•  Group number
•  Protection bits
•  Times (file last read, file last written, inode last written)
•  File code: specifies if the i-node represents a directory,

an ordinary user file, or a “special file” (typically an I/O
device)

•  Size: length of file in bytes
•  Block list: locates contents of file (in the file contents

area)
–  more on this soon!

•  Link count: number of directories referencing this i-node

5/15/09 16

The flat (i-node) file system

•  Each file is known by a number, which is the number
of the i-node
–  seriously – 1, 2, 3, etc.!
–  why is it called “flat”?

•  Files are created empty, and grow when extended
through writes

5/15/09 17

The tree (directory, hierarchical) file system

•  A directory is a flat file of fixed-size entries
•  Each entry consists of an i-node number and a file

name
i-node number File name

152 .
18 ..

216 my_file
4 another_file

93 holy_cow
144 a_directory

•  It’s as simple as that!

5/15/09 18

The “block list” portion of the i-node

•  Clearly it points to blocks in the file contents area
•  Must be able to represent very small and very large

files. How?
•  Each inode contains 15 block pointers

–  first 12 are direct blocks (i.e., 4KB blocks of file data)
–  then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

…

…

5/15/09 19

So …

•  Only occupies 15 x 4B in the i-node
•  Can get to 12 x 4KB = a 48KB file directly

–  (12 direct pointers, blocks in the file contents area are 4KB)
•  Can get to 1024 x 4KB = an additional 4MB with a

single indirect reference
–  (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks
holding file data)

•  Can get to 1024 x 1024 x 4KB = an additional 4GB
with a double indirect reference
–  (the 14th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to 4KB blocks
in the file contents area that contian 1K 4B pointers to blocks
holding file data)

•  Maximum file size is 4TB

Putting it all together

•  File system is just a data structure

5/15/09 20

superblock

inode
free list

file block
free list

inode for ‘/’
directory ‘/’

(table of entries)

inode for
‘usr/’

inode for
‘var/’

directory ‘var/’
(table of entries)

directory ‘usr/’
(table of entries)

•••
••• inode for

‘bigfile.bin’

data blocks

indirection block

data blocks

Indirection
block data blocks

indirection
block

•••

•••

File system layout

•  One important goal of a filesystem is to lay this data
structure out on disk
–  have to keep in mind the physical characteristics of the disk

itself (seeks are expensive)
–  and the characteristics of the workload (locality across files

within a directory, sequential access to many files)

•  Old UNIX’s layout is very inefficient
–  constantly seeking back and forth between inode area and

data block area as you traverse the filesystem, or even as
you sequentially read files

•  Newer file systems are smarter
•  Newer storage devices (SSDs) change the contraints,

but not the basic data structure

5/15/09 21

5/15/09 22

File system consistency

•  Both i-nodes and file blocks are cached in memory
•  The “sync” command forces memory-resident disk

information to be written to disk
–  system does a sync every few seconds

•  A crash or power failure between sync’s can leave an
inconsistent disk

•  You could reduce the frequency of problems by
reducing caching, but performance would suffer big-
time

What do you do after a crash?

•  Run a program called “fsck” to try to fix any
consistency problems

•  fsck has to scan the entire disk
–  as disks are getting bigger, fsck is taking longer and longer
–  modern disks: fsck can take a full day!

•  Newer file systems try to help here
–  are more clever about the order in which writes happen, and

where writes are directed
•  e.g., Journalling file system: collect recent writes in a log called

a journal. On crash, run through journal to replay against file
system.

5/15/09 23

5/15/09 24

fsck i-check
(consistency of the flat file system)

•  Is each block on exactly one list?
–  create a bit vector with as many entries as there are blocks
–  follow the free list and each i-node block list
–  when a block is encountered, examine its bit

•  If the bit was 0, set it to 1
•  if the bit was already 1

–  if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

–  if the block is in two files, call support!

–  if there are any 0’s left at the end, put those blocks on the
free list

5/15/09 25

fsck d-check
(consistency of the directory file system)

•  Do the directories form a tree?
•  Does the link count of each file equal the number of

directories links to it?
–  I will spare you the details

•  uses a zero-initialized vector of counters, one per i-node
•  walk the tree, then visit every i-node

5/15/09 26

Protection

•  Objects: individual files
•  Principals: owner/group/world
•  Actions: read/write/execute

•  This is pretty simple and rigid, but it has proven to be
about what we can handle!

