
CSE 451: Operating Systems
Spring 2009

Paging & TLBs

Steve Gribble

4/26/09 2

Managing Page Tables

•  Last lecture:
–  size of a page table for 32 bit AS with 4KB pages was 4MB!

•  far too much overhead
–  how can we reduce this?

•  observation: only need to map the portion of the address space
that is actually being used (tiny fraction of address space)

–  only need page table entries for those portions
•  how can we do this?

–  make the page table structure dynamically extensible…

–  all problems in CS can be solved with a level of indirection
•  two-level page tables

4/26/09 3

Two-level page tables

•  With two-level PT’s, virtual addresses have 3 parts:
–  master page number, secondary page number, offset
–  master PT maps master PN to secondary PT
–  secondary PT maps secondary PN to page frame number
–  offset + PFN = physical address

•  Example:
–  4KB pages, 4 bytes/PTE

•  how many bits in offset? need 12 bits for 4KB
–  want master PT in one page: 4KB/4 bytes = 1024 PTE

•  hence, 1024 secondary page tables
–  so: master page number = 10 bits, offset = 12 bits

•  with a 32 bit address, that leaves 10 bits for secondary PN

4/26/09 4

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page table secondary

page table

page frame
number

4/26/09 5

Addressing Page Tables

•  Where are page tables stored?
–  and in which address space?

•  Possibility #1: physical memory
–  easy to address, no translation required
–  but, page tables consume memory for lifetime of VAS

•  Possibility #2: virtual memory (OS’s VAS)
–  cold (unused) page table pages can be paged out to disk
–  but, addresses page tables requires translation

•  how do we break the recursion?
–  don’t page the outer page table (called wiring)

•  So, now that we’ve paged the page tables, might as
well page the entire OS address space!
–  tricky, need to wire some special code and data (e.g.,

interrupt and exception handlers)

4/26/09 6

Making it all efficient

•  Original page table schemed doubled the cost of
memory lookups
–  one lookup into page table, a second to fetch the data

•  Two-level page tables triple the cost!!
–  two lookups into page table, a third to fetch the data

•  How can we make this more efficient?
–  goal: make fetching from a virtual address about as efficient

as fetching from a physical address
–  solution: use a hardware cache inside the CPU

•  cache the virtual-to-physical translations in the hardware
•  called a translation lookaside buffer (TLB)
•  TLB is managed by the memory management unit (MMU)

4/26/09 7

TLBs

•  Translation lookaside buffers
–  translates virtual page #s into PTEs (not physical addrs)
–  can be done in single machine cycle

•  TLB is implemented in hardware
–  is a fully associative cache (all entries searched in parallel)
–  cache tags are virtual page numbers
–  cache values are PTEs
–  with PTE + offset, MMU can directly calculate the PA

•  TLBs exploit locality
–  processes only use a handful of pages at a time

•  16-48 entries in TLB is typical (64-192KB)
•  can hold the “hot set” or “working set” of process

–  hit rates in the TLB are therefore really important

4/26/09 8

Managing TLBs

•  Address translations are mostly handled by the TLB
–  >99% of translations, but there are TLB misses occasionally
–  in case of a miss, who places translations into the TLB?

•  Hardware (memory management unit, MMU)
–  knows where page tables are in memory

•  OS maintains them, HW access them directly
–  tables have to be in HW-defined format
–  this is how x86 works

•  Software loaded TLB (OS)
–  TLB miss faults to OS, OS finds right PTE and loads TLB
–  must be fast (but, 20-200 cycles typically)

•  CPU ISA has instructions for TLB manipulation
•  OS gets to pick the page table format

4/26/09 9

Managing TLBs (2)

•  OS must ensure TLB and page tables are consistent
–  when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

•  What happens on a process context switch?
–  remember, each process typically has its own page tables
–  need to invalidate all the entries in TLB! (flush TLB)

•  this is a big part of why process context switches are costly
–  can you think of a hardware fix to this?

•  When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
–  choosing a victim PTE is called the “TLB replacement policy”
–  implemented in hardware, usually simple (e.g. LRU)

4/26/09 10

Segmentation

•  A similar technique to paging is segmentation
–  segmentation partitions memory into logical units

•  stack, code, heap, …
–  on a segmented machine, a VA is <segment #, offset>
–  segments are units of memory, from the user’s perspective

•  A natural extension of variable-sized partitions
–  variable-sized partition = 1 segment/process
–  segmentation = many segments/process

•  Hardware support:
–  multiple base/limit pairs, one per segment

•  stored in a segment table
–  segments named by segment #, used as index into table

4/26/09 11

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
 protection fault

no

yes

offset

base limit

segment table

4/26/09 12

Combining Segmentation and Paging

•  Can combine these techniques
–  x86 architecture supports both segments and paging

•  Use segments to manage logically related units
–  stack, file, module, heap, …?
–  segment vary in size, but usually large (multiple pages)

•  Use pages to partition segments into fixed chunks
–  makes segments easier to manage within PM

•  no external fragmentation
•  segments are “pageable”- don’t need entire segment in memory at same time

•  Linux:
–  1 kernel code segment, 1 kernel data segment
–  1 user code segment, 1 user data segment
–  N task state segments (stores registers on context switch)
–  1 “local descriptor table” segment (not really used)
–  all of these segments are paged

•  three-level page tables

4/26/09 13

Cool Paging Tricks

•  Exploit level of indirection between VA and PA
–  shared memory

•  regions of two separate processes’ address spaces map to the
same physical frames

–  read/write: access to share data
–  execute: shared libraries!

•  will have separate PTEs per process, so can give different
processes different access privileges

•  must the shared region map to the same VA in each process?
–  copy-on-write (COW), e.g. on fork()

•  instead of copying all pages, created shared mappings of
parent pages in child address space

–  make shared mappings read-only in child space
–  when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

4/26/09 14

Another great trick

•  Memory-mapped files
–  instead of using open, read, write, close

•  “map” a file into a region of the virtual address space
–  e.g., into region with base ‘X’

•  accessing virtual address ‘X+N’ refers to offset ‘N’ in file
•  initially, all pages in mapped region marked as invalid

–  OS reads a page from file whenever invalid page accessed
–  OS writes a page to file when evicted from physical memory

•  only necessary if page is dirty

