
CSE 451: Operating Systems
Spring 2009

Course Introduction

Steve Gribble

4/9/09 1

4/9/09 2

Today’s agenda

•  Administrivia
–  course overview

•  course staff
•  general structure
•  your to-do list

•  OS overview
–  functional

•  resource mgmt, major issues
–  historical

•  batch systems, multiprogramming, time shared OS’s
•  PCs, networked computers

4/9/09 3

Course overview

•  Everything you need to know is on the course web:

http://www.cs.washington.edu/education/courses/451/CurrentQtr

4/9/09 4

•  course staff
–  Steve Gribble
–  Sean Anderson (TA)
–  Ryan McElroy (TA)

•  general structure
–  read the text prior to class
–  class will supplement rather than regurgitate the text
–  sections will focus on the project
–  we really want to encourage discussion, both in class and in

section

Overview

4/9/09 5

•  please read the entire course web thoroughly, today
•  please get yourself on the cse451 email list, today

–  and check your email daily

•  homework 1 (reading + problems) is posted on the
web; due Monday

•  project 1 will be:
–  posted on the web Wednesday
–  discussed in section on Thursday
–  due a week from Friday

Your to do list

4/9/09 6

More about 451

•  This is really (at least!) two classes:
–  A classroom/textbook part (mainly run by me)
–  A project part (mainly run by the TAs)

•  In a perfect world, we would do this as a two-quarter sequence
•  Sometimes the projects and the lectures will mesh, sometimes

they won’t
•  But in any case, you will have to keep up with both the

classroom and the projects
•  There will be a lot of work
•  But you will learn a lot
•  In the end, you’ll understand much more deeply how computers

work

Looking for volunteers

•  I want to “try out” the MIT 6.828 project sequence
–  build a teeny OS starting from the HW
–  will likely be very intensive, might not work out
–  do this instead of current project sequence

•  Looking for two project teams (two people per team)
–  be familiar with C programming, x86 assembly

•  or willing to learn *fast*
–  be comfortable with no safety net

•  Email me if you’re interested

4/9/09 7

4/9/09 8

What is an Operating System?

•  An operating system (OS) is:
–  a software layer to abstract away and manage details of

hardware resources
–  a set of utilities to simplify application development

–  “all the code you didn’t write” in order to implement your
application

•  Key idea: virtualization of resources

Applications

OS

Hardware

4/9/09 9

The OS and hardware

•  An OS mediates programs’ access to hardware
resources
–  Computation (CPU)
–  Volatile storage (memory) and persistent storage (disk, SSD, ..)
–  Network communications (TCP/IP stacks, ethernet cards, etc.)
–  Input/output devices (keyboard, mouse, display, sound card, ..)

•  The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
–  processes (CPU, memory)
–  files (disk)
–  programs (sequences of instructions)
–  sockets (network)

4/9/09 10

Why bother with an OS?
•  Application benefits

–  programming simplicity
•  see high-level abstractions (files) instead of low-level hardware

details (device registers)
•  abstractions are reusable across many programs

–  portability (across machine configurations or architectures)
•  device independence: 3Com card or Intel card?

•  User benefits
–  safety

•  program “sees” own virtual machine, thinks it owns computer
•  OS protects programs from each other (what if one crashes?)
•  OS fairly multiplexes resources across programs

–  efficiency (cost and speed)
•  share one computer across many users
•  concurrent execution of multiple programs

4/9/09 11

The major OS issues

•  structure: how is the OS organized?
•  sharing: how are resources shared across users?
•  naming: how are resources named (by users or programs)?
•  security: how is integrity of the OS and its resources ensured?
•  protection: how is one user/program protected from another?
•  performance: how do we make it all go fast?
•  reliability: what happens if something goes wrong (either with

hardware or with a program)?
•  extensibility: can we add new features?
•  communication: how do programs exchange information,

including across a network?

4/9/09 12

More OS issues…

•  concurrency: how are parallel activities (computation and I/O)
created and controlled?

•  scale and growth: what happens as demands or resources
increase?

•  persistence: how do you make data last longer than program
executions?

•  distribution: how do multiple computers interact with each
other? how do we make distribution invisible?

•  accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are a huge number of engineering tradeoffs
in dealing with these issues!

4/9/09 13

Hardware/Software Changes with Time

•  1960s: mainframe computers (IBM)
•  1970s: minicomputers (DEC)
•  1980s: microprocessors and workstations (SUN)
•  1990s: PCs (rise of Microsoft, Intel, then Dell)
•  1995-2005: Internet Services / Clusters (Amazon)
•  2006: General Cloud Computing (Google, Amazon)
•  …..
•  2020: it’s up to you!!

4/9/09 14

Is there anything new?

•  New challenges constantly arise
–  embedded computing (e.g., iPod, GPS)
–  sensor networks (very low power, memory, etc.)
–  peer-to-peer systems (Kazaa, BitTorrent, etc.)
–  ad-hoc networking
–  global-scale server farms / cloud computing (e.g., Amazon

EC2, Google)
–  software for utilizing huge clusters (e.g., MapReduce,

Bigtable, GFS)
–  overlay networks (e.g., PlanetLab)
–  worms
–  finding bugs in system code (e.g., model checking)

4/9/09 15

OS history

•  In the very beginning…
–  OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

–  interfaces were literally switches and blinking lights
•  And then came batch systems

–  OS was stored in a portion of primary memory
–  OS loaded the next job into memory from the card reader

•  job gets executed
•  output is printed, including a dump of memory (why?)
•  repeat…

–  card readers and line printers were very slow
•  so CPU was idle much of the time (wastes $$)

4/9/09 16

Spooling

•  Disks were much faster than card readers and
printers

•  Spool (Simultaneous Peripheral Operations On-Line)
–  while one job is executing, spool next job from card reader

onto disk
•  slow card reader I/O is overlapped with CPU

–  can even spool multiple programs onto disk
•  OS must choose which to run next
•  job scheduling

–  but, CPU still idle when a program interacts with a peripheral
during execution

4/9/09 17

Multiprogramming

•  To increase system utilization, multiprogramming
OSs were invented
–  keeps multiple runnable jobs loaded in memory at once
–  overlaps I/O of a job with computing of another

•  while one job waits for I/O completion, OS runs instructions
from another job

–  to benefit, need asynchronous I/O devices
•  need some way to know when devices are done

–  interrupts
–  polling

–  goal: optimize system throughput
•  perhaps at the cost of response time…

4/9/09 18

Timesharing

•  To support interactive use, create a timesharing OS:
–  multiple terminals into one machine
–  each user has illusion of entire machine to him/herself
–  optimize response time, perhaps at the cost of throughput

•  Timeslicing
–  divide CPU equally among the users
–  if job is truly interactive (e.g. editor), then can jump between

programs and users faster than users can generate load
–  permits users to interactively view, edit, debug running

programs (why does this matter?)

•  MIT Multics system (mid-1960’s) was the first large
timeshared system
–  nearly all OS concepts can be traced back to Multics

4/9/09 19

Timesharing

•  In early 1980s, a single
timeshared VAX/780 (like
the one in the Allen Center
atrium) ran computing for the
entire CSE department.

•  A typical VAX/780 was 1
MIPS (1 MHz) and had
16MB of RAM and 100MB of
disk.

•  An iPhone is 400 MIPS, has
128MB of RAM (way too little
though) and 8GB of disk.

4/9/09 20

Parallel systems
•  Some applications can be written as multiple parallel

threads or processes
–  can speed up the execution by running multiple threads/

processes simultaneously on multiple CPUs [Burroughs
D825, 1962]

–  need OS and language primitives for dividing program into
multiple parallel activities

–  need OS primitives for fast communication among activities
•  degree of speedup dictated by communication/computation

ratio
–  many flavors of parallel computers today

•  SMPs (symmetric multi-processors, multi-core)
•  SMT (simultaneous multithreading [“hyperthreading”]
•  MPPs (massively parallel processors)
•  NOWs (networks of workstations) [clusters]
•  computational grid (SETI @home)

4/9/09 21

Personal computing

•  Primary goal was to enable new kinds of interactive
applications

•  Bit-mapped display [Xerox Alto,1973]
–  New graphic/visual apps
–  new input device (the mouse)

•  Move computing near the display
–  why?

•  Window systems
–  the display as a managed resource

•  Local area networks [Ethernet]
–  why?

•  Effect on OS?

4/9/09 22

Distributed OS

•  distributed systems to facilitate use of geographically
distributed resources
–  workstations on a LAN
–  servers across the Internet
–  10,000 node cluster in a machine room

•  supports communications between jobs
–  interprocess communication

•  message passing, shared memory
–  networking stacks

•  sharing of distributed resources (hardware, software)
–  load balancing, authentication and access control, …

•  speedup isn’t always the issue
–  access to diversity of resources is goal
–  fault tolerance

4/9/09 23

Embedded, Mobile OSs

•  Pervasive computing
–  cheap processors embedded everywhere
–  how many are on your body now? in your car?
–  cell phones, PDAs, games, iPod, network computers, …

•  Typically very constrained hardware resources
–  slow processors
–  small amount of memory
–  no disk or tiny disk
–  typically only one dedicated application
–  limited power

•  But technology changes fast
–  embedded CPUs are getting faster
–  storage is growing rapidly

4/9/09 24

CSE 451

•  In this class we will learn:
–  what are the major components of most OS’s?
–  how are the components structured?
–  what are the most important (common?) interfaces?
–  what policies are typically used in an OS?
–  what algorithms are used to implement policies?

•  Philosophy
–  you may not ever build an OS
–  but as a computer scientist or computer engineer you need

to understand the foundations
–  most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

