
1

CSE 451: Operating Systems

Autumn 2009

Module 24

Virtual Machine Monitors

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 2

What do Virtual Machine Monitors enable?

• Running multiple operating systems (and their
applications) on a single physical computer, as if
each were running on its own private virtual computer

• Contemporary examples
– VMWare

– Microsoft’s VirtualPC / VirtualServer

– Parallels (Macintosh)

– Xen

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 3

VMM structure

hardware

virtual machine monitor

Linux

virtual machine

OS + apps OS + apps

Windows

virtual machine

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 4

VMM History

• Conceived by IBM in the late 1960’s
– CP-40, CP-67, VM/360

• Sold continuously since then

• Used first for OS development and debugging, then
for time sharing (multiple single-user OS’s, plus a few
single-job batch OS’s), eventually for server
consolidation

System 370 Machine

VM/370

Batch processing

OS

Time sharing

OS

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 5

VMMs Today

• OS development and debugging

• Software compatibility testing

• Running software from another OS
– Or, OS version

• Virtual infrastructure for Internet services (server
consolidation)

• Two architectures:
– Type I VMM runs on the raw hardware

• We’ll focus on this approach

– Type II VMM runs hosted on another OS

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 6

Amazon’s Elastic Compute Cloud (EC2)

• Provides service developers with a set virtual
machines and storage resources

• Scalability
– New machines can be created in minutes

• Security
– Virtual machines provide stronger isolation than OS

processes

• Developer control
– Developers choose the OS, software, libraries, etc.

• Low cost
– Developers pay only for what they use

2

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 7

VMM Implementation Overview

• A VMM is just an operating system that exposes a
(virtual) hardware interface

hardware

virtual machine monitor

Windows

virtual machine

Linux

virtual machine virtual
architecture

physical
architecture

=

OS + apps OS + apps

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 8

Comparing the Unix and VMM APIs

(virtual) Keyboard,
display device

/dev/consoleDisplay

(virtual) Physical memoryVirtual MemoryMemory

(virtual) EthernetSocketsNetworking

(virtual) diskFile systemStorage

VMMUNIX

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 9

Possible Implementation Strategy:
Complete machine emulation

• The VMM implements the complete
hardware architecture in software

while(true) {
Instruction instr= fetch();

// emulate behavior in software
instr.emulate();
}

Drawback: This is really slow

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 10

Physical hardware

loads,stores,
branches,

ALU operations
VMM

machine halt,
I/O instructions,
MMU manipulation,
disabling interrupts

Alternative: VMM gets control on privileged
instructions only

• Treat guest operating systems (and their apps) like an application
– Guest OS (and its apps) run in user mode

– Most instructions execute natively on the CPU
– Privileged instructions are trapped and emulated

OS + apps

V i r t u a l m a c h i n e s
. . .

OS + apps OS + apps

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 11

Virtualizing the User/Kernel Boundary

• Both the guest OS and applications run in (physical) user-mode
– This is necessary so that privileged instructions trap into the VMM

• For each virtual machine, the VMM keeps a software mode bit:
– During a system call, switch to “kernel” mode
– On system call return, switch to “user” mode

• How does the VMM know to do this? How does it get control??

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 12

Handling Privileged Instructions

• Virtual machine issues a privileged instruction (e.g., disk read)
• VMM determines whether the virtual machine was in “user”

mode or “kernel” mode
– Note: the virtual mode is distinct from the physical mode (Yikes!)

• If “user” mode, raise a protection exception
– reflect it to the guest OS just as the hardware would do

• start executing at the entry point of the interrupt handler of the guest
OS

• If “kernel” mode, emulate the disk read in software; then, return
control to the guest OS
– just as would happen after a “real” start I/O operation

3

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 13

Tracing Through a File System Read
(simplified conceptual picture

read() syscall

trap handler
handle read syscall

read from disk()
trap privileged instruction
If “kernel” mode:

emulate virtual disk
else:

raise protection violation
finish read syscall
copy data to user buffer
return from system call

return from read()

Application Guest OS VMM

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 14

But really …

Application Guest OS VMM Hardware
read() syscall

trap detected
trap handler;
change VM
to “kernel” mode

trap handler
handle read syscall
read from disk()

priv insc. detected
trap handler;
emulate I/O

.

.

.

.

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 15

Questions, to clarify …

• What if the I/O could be handled from the buffer
cache?

• Does the VMM handle a VM’s I/O request
synchronously?

• There are a zillion different types of disks (and
networks and …) … Do the device drivers for these
reside in the guest OS or in the VMM?

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 16

Virtual Disk: Possible Implementations

• Static disk partitions

• A file in the file system
– Especially for type-II VMMs

• A special virtual disk file system

• A network storage abstraction
– e.g., Amazon’s S3

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 17

Caveats

• Must be sure that all instructions that modify
hardware state are privileged (so that VMM can get
control, modify the virtual hardware state for that
guest, and not modify the physical hardware state)
– Not the case on x86!

• E.g., instructions that work in either user or kernel mode but
have different effects depending on the mode

– So must do binary re-writing

• Binary re-writing is also (part of) the solution for Type
II VMM’s

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 18

• VMM’s also utilize memory protection (in addition to
privileged instructions) to do their job

• Have not described how memory is virtualized by a
VMM, creating “virtual physical memory” for the guest
OS’s
– Involves the VMM futzing with the page tables in the guest

OS’s

4

12/9/2009 © 2009 Gribble, Lazowska, Levy, Whitaker, Zahorjan 19

