
1

1

Section 8:

File Systems
Project 3

2

Questions?

3

Project 3

• Work with a real file system

• Given:

• cse451fs: simplified file system for Linux

• Goals:

• Understand how it works

• Modify implementation to:
• Increase maximum size of files (currently 13KB)

• Allow for longer file names (currently 30 chars)

4

Project 4 Setup

• Build a kernel module for cse451fs

• Transfer it to VMware

• On VMware
• load the cse451fs module

• format the file system using (modified) mkfs
tool

• mount your file system

• Test using tools like ls, cat, etc. (see last slides
for gotchas)

• Step 1: try this procedure with given code

• Step 2: read cse451fs.h, then dir.c

5

Linux FS layers

Disk drivers

Buffer cache

User apps

VFS

ext2 ext3 vfatcse451fs

� $ for disk blocks

� block device

Blocks

Inodes, direntries

Files, directories

6

File systems in Linux

• Organize blocks in a block device into files and
directories

Core concepts:

• Inodes and inode numbers
• Inode = structure maintaining all metadata about a file (or
directory), except for name

• Inode number = unique ID of inode

• One or more file names can point (link) to the same inode

• Why do we need inode numbers? Can’t we use absolute paths
as IDs?

2

7

File systems in Linux

• Organize blocks in a block device into files and
directories

Core concepts:

• Inodes and inode numbers
• Inode = structure maintaining all metadata about a file (or
directory), except for name

• Inode number = unique ID of inode

• One or more file names can point (link) to the same inode

• Inode numbers provide location independence

• So where do we store file names then?

8

File systems in Linux

• Organize blocks in a block device into files and
directories

Core concepts:

• Inodes and inode numbers
• Inode = structure maintaining all metadata about a file,
except for name

• Inode number = unique ID of inode

• One or more file names can point (link) to the same inode

• Inode numbers provide location independence

• Directory entry

• = pair (name, inode number)

• A directory is just a file, whose contents is a list of directory
entries

9

File system disk structure

• What types of things do we need to store
in a file system?

10

cse451fs disk structure

• Superblock: tells where all other things are

• Contains inode map:

• Bit array, tracks which inodes are currently in use

• Contains parameter values (e.g., block size)

• Data map:

• Bit array, tracks which data blocks are in use

• Inode blocks:

• Contains all inodes (i.e., metadata for files) stored here

• Data blocks:

• Contains data of files / directories

11

cse451fs structure

struct cse451_super_block {

1365 __u16 s_nNumInodes; // inode map is tail of superblock

2 __u16 s_nDataMapStart; // block # of first data map block

1 __u32 s_nDataMapBlocks; // data map size, in blocks

3 __u32 s_nInodeStart; // block # of first inode block

85 __u32 s_nNumInodeBlocks; // number of blocks of inodes

88 __u32 s_nDataBlocksStart; // block # of first data block

4008 __u32 s_nDataBlocks; // number of blocks of data

7 __u32 s_nBusyInodes; // number of inodes in use

0x451f __u16 s_magic; // magic number

unsigned long s_imap; // name for inode map

};

1 1 1 85 4008

Sample values for a 4MB disk with 4 files and 3 dirs using 1K blocks
12

Inode structure

#define CSE451_NUMDATAPTRS 10

struct cse451_inode {

__u16 i_mode; � determines if file or dir

__u16 i_nlinks; (+ protection)

__u16 i_uid;

__u16 i_gid;

__u32 i_filesize;

__u32 i_datablocks[CSE451_NUMDATAPTRS];

};

3

13

Inode structure

#define CSE451_NUMDATAPTRS 10

struct cse451_inode {

__u16 i_mode; � determines if file or dir

__u16 i_nlinks; (+ protection)

__u16 i_uid;

__u16 i_gid;

__u32 i_filesize;

__u32 i_datablocks[CSE451_NUMDATAPTRS];

};

• What’s the size of the inode struct?
• Multiple inodes per block

• How many for 1K block?

• mkfs decides how many inodes to create, using heuristic
• create an inode for every three data blocks

• In general, the max number of inodes (so of files) is decided
at FS formatting time

14

Data blocks

• Blocks for regular files contain file data

• Blocks for directories contain directory entries:

#define CSE451_MAXDIRNAMELENGTH 30

struct cse451_dir_entry {

__u16 inode;

char name[CSE451_MAXDIRNAMELENGTH];

};

• Data block for / directory
containing:
. .. etc bin

0Name

0Inode4

“bin”Name

3Inode3

“etc”Name

2Inode2

“..”Name

1Inode1

“.”Name

1Inode0

ValueFieldDir. entry

Data block for /

15

Sample data block usage

20Total:

55,000 bytes/bin/date

1010,000 bytes/bin/sh

1100 bytes/etc/fstab

11024 bytes/etc/passwd

14 entries + 1 null entry/bin

14 entries + 1 null entry/etc

14 entries + 1 null entry/

Data BlocksSizeFile/Directory

For a 4MB file system with 1KB blocks
• /

• etc

• passwd

• fstab

• bin

• sh

• date

16

Project 4 requirements

• Increase maximum sizes of files

• Be efficient for small files but allow large files

• Changing constant (=10) is not enough!

• Come up with a better design/structure for locating data
blocks

• E.g., indirect blocks?

• You don’t have to support arbitrarily large files

• Fine to have constant new_max (but new_max >> old_max)

• Allow for longer file names
• Be efficient for short files names but allow large file names

• Again, don’t just change the constant

17

Approaches for longer file names

• Store long names in a separate data block, and
keep a pointer to that in the directory entry.

• Short names can be stored as they are.

• Recommended

• Combine multiple fixed-length dir entries into a
single long dir entry (win95)

• It is easier if the entries are adjacent.

• Put a length field in the dir entry and store
variable length strings

• need to make sure that when reading a directory, that
you are positioned at the beginning of an entry.

18

Getting started with the code

• Understand the source of the limits in the existing
implementation
• Look at the code that manipulates dir entries

• mkfs code
• dir.c in the file system source code

• Longer file names:
• The code for will largely be in dir.c: add_entry() and
find_entry()

• In mkfs, change how the first two entries (for “.” and
“..”) are stored

• Bigger files:
• super.c:get_block()
• References to i_datablock[] array in an inode will have to
change

4

19

Linux Buffer Manager Code

• To manipulate disk blocks, you need to go
through the buffer cache

• Linux buffer cache fundamentals:

• blocks are represented by buffer_heads

• Just another data structure

• Actual data is in buffer_head->b_data

• For a given disk block, buffer manager could be:

• Completely unaware of it

• no buffer_head exists, block not in memory

• Aware of block information

• buffer_head exists, but block data (b_data) not in
memory

• Aware of block information and data

• Both the buffer_head and its b_data are valid (“$ hit”)

20

Accessing blocks

• To read a block, FS uses bread(…):

• Find the corresponding buffer_head

• Create if doesn’t exist

• Make sure the data is in memory (read from
disk if necessary)

• To write a block:

• mark_buffer_dirty() + brelse() - mark buffer as changed
and release to kernel (which does the writing)

21

Tool limitation warning

• Some stuff in linux kernel is limited to 256
chars

• e.g. VFS, ls

• Be careful when testing long filenames!

• dd is useful for creating large test files

• dd if=/dev/zero of=200k bs=1024 count=200

• df is useful to check you’re freeing

everything correctly

22

Gcc warning

• gcc might insert extra space into structs
• How big do you think this is?
struct test { char a; int b; }

• Why is this a problem?
• What if test represents something you want on disk?

• e.g. directory entries

• Discrepancy between the disk layout and memory layout

• Fix:
struct test2 {

char a;

int b;

} __attribute__((packed));

• sizeof(test2) is now 5

