* Section 8:

File Systems
Project 3

i Questions?

i Project 3

e Work with a real file system
e Given:

e cse451fs: simplified file system for Linux
e Goals:

e Understand how it works

¢ Modify implementation to:
* Increase maximum size of files (currently 13KB)
* Allow for longer file names (currently 30 chars)

i Project 4 Setup

e Build a kernel module for cse451fs
e Transfer it to VMware
e On VMware

e load the cse451fs module

o format the file system using (modified) mkfs
tool

e mount your file system

e Test using tools like Is, cat, etc. (see last slides
for gotchas)

e Step 1: try this procedure with given code
e Step 2: read cse451fs.h, then dir.c

i Linux FS layers

User apps
Files, directories]
VFS
Inodes, direntries
|cse451fs| ext2 | ext3 | vfat |

Blocks

Buffer cache & § for disk blocks

_ Disk drivers < block device

i File systems in Linux

e Organize blocks in a block device into files and
directories

Core concepts:
¢ Inodes and inode numbers

e Inode = structure maintaining all metadata about a file (or
directory), except for name
Inode number = unique ID of inode
One or more file names can point (link) to the same inode
Why do we need inode numbers? Can’t we use absolute paths
as IDs?

File systems in Linux

e Organize blocks in a block device into files and
directories

Core concepts:

¢ Inodes and inode numbers
e Inode = structure maintaining all metadata about a file (or
directory), except for name
e Inode number = unique ID of inode
¢ One or more file names can point (link) to the same inode
e Inode numbers provide location independence

e So where do we store file names then?

File systems in Linux

e Organize blocks in a block device into files and
directories

Core concepts:

¢ Inodes and inode numbers

e Inode = structure maintaining all metadata about a file,
except for name

¢ Inode number = unique ID of inode
¢ One or more file names can point (link) to the same inode
« Inode numbers provide location independence
e Directory entry
e = pair (name, inode number)

e A directory is just a file, whose contents is a list of directory
entries

File system disk structure

e What types of things do we need to store
in a file system?

csed451fs disk structure

‘ boot ‘smerblock‘dataﬂmp‘inode blocks‘ data blocks ‘

¢ Superblock: tells where all other things are

* Contains inode map:

* Bit array, tracks which inodes are currently in use

* Contains parameter values (e.g., block size)
e Data map:

* Bit array, tracks which data blocks are in use
¢ Inode blocks:

* Contains all inodes (i.e., metadata for files) stored here
e Data blocks:

* Contains data of files / directories

csed451fs structure

1 1 1 85 4008
‘ boot ‘superblock ‘data map ‘inode blocks‘ data blocks ‘

struct csed51 super_block |

1365 __ul6 s_nNumInodes; // inode map is tail of superblock
2 __ul6 s_nDataMapStart; // block # of first data map block
1 __u32 s_nDataMapBlocks; // data map size, in blocks

3 __u32 s_nInodeStart; // block # of first inode block
85 __u32 s_nNumInodeBlocks; // number of blocks of inodes

88 __u32 s_nDataBlocksStart; // block # of first data block
4008 __u32 s_nDataBlocks; // number of blocks of data

7 __u32 s_nBusyInodes; // number of inodes in use

0x451f __ul6 s_magic; // magic number

// name for inode map

unsigned long s_imap;
| bi

Sample values for a 4MB disk with 4 files and 3 dirs using 1K blocks

Inode structure

#define CSE451_NUMDATAPTRS 10

struct cse451 _inode {

__ulé i_mode; €& determines if file or dir
__ul6 i_nlinks; (+ protection)

_ulé i_uid;

_ulée i_gid;

__u32 i_filesize;
__u32 i_datablocks[CSE451_NUMDATAPTRS];
i

Inode structure

#define CSE451_NUMDATAPTRS 10

struct csed51_inode {

__ulée i_mode; € determines if file or dir
__ul6 i_nlinks; (+ protection)

__uleée i_uid;

_ulée i_gid;

__u32 i_filesize;
__u32 i_datablocks[CSE451_NUMDATAPTRS] ;
i

e What's the size of the inode struct?

e Multiple inodes per block
e How many for 1K block?

* mkfs decides how many inodes to create, using heuristic
e create an inode for every three data blocks

« In general, the max number of inodes (so of files) is decided
at FS formatting time
13

Data blocks

e Blocks for regular files contain file data
e Blocks for directories contain directory entries:

#define CSE451_MAXDIRNAMELENGTH 30
Data block for /

struct cse451 dir entry {

w16 inode; Dir. entry | Field Value
char name [CSE451_MAXDIRNAMELENGTH] ; 0 Inode 1
}i Name
1 Inode 1
e Data block for / directory Name
containing: 2 Inode 2
etc bin Name “etc”
3 Inode 3
Name “bin”
4 Inode 0
Name 0

Sample data block usage

For a 4MB file system with 1KB blocks
./

o etc

« passwd

o fstab
« bin

e sh

. date
File/Directory Size Data Blocks
/ 4 entries + 1 null entry 1
/etc 4 entries + 1 null entry 1
/bin 4 entries + 1 null entry 1
/etc/passwd 1024 bytes 1
/etc/fstab 100 bytes 1
/bin/sh 10,000 bytes 10
/bin/date 5,000 bytes 5

Total: 20 15

Project 4 requirements

e Increase maximum sizes of files
* Be efficient for small files but allow large files
e Changing constant (=10) is not enough!
* Come up with a better design/structure for locating data
blocks
* E.g., indirect blocks?
* You don’t have to support arbitrarily large files
* Fine to have constant new_max (but new_max >> old_max)

e Allow for longer file names
* Be efficient for short files names but allow large file names
e Again, don't just change the constant

Approaches for longer file names

e Store long names in a separate data block, and
keep a pointer to that in the directory entry.
* Short names can be stored as they are.
¢ Recommended

e Combine multiple fixed-length dir entries into a
single long dir entry (win95)
« It is easier if the entries are adjacent.

e Put a length field in the dir entry and store
variable length strings

* need to make sure that when reading a directory, that
you are positioned at the beginning of an entry.

Getting started with the code

e Understand the source of the limits in the existing
implementation
* Look at the code that manipulates dir entries
* mkfs code
e dir.c in the file system source code
e Longer file names:
* The code for will largely be in dir.c: add_entry() and
find_entry()
* In mkfs, change how the first two entries (for “.” and
“..") are stored
e Bigger files:
e super.c:get_block()

* References to i_datablock[] array in an inode will have to
change

Linux Buffer Manager Code

e To manipulate disk blocks, you need to go
through the buffer cache
e Linux buffer cache fundamentals:
* blocks are represented by buffer_heads
* Just another data structure
e Actual data is in buffer_head->b_data
* For a given disk block, buffer manager could be:
* Completely unaware of it
no buffer_head exists, block not in memory
* Aware of block information

buffer_head exists, but block data (b_data) not in
memory

* Aware of block information and data
Both the buffer_head and its b_data are valid (“$ hit")
19

Accessing blocks

e To read a block, FS uses bread(...):
¢ Find the corresponding buffer_head
» Create if doesn’t exist

e Make sure the data is in memory (read from
disk if necessary)

e To write a block:

* mark_buffer_dirty() + brelse() - mark buffer as changed
and release to kernel (which does the writing)

* Tool limitation warning

e Some stuff in linux kernel is limited to 256
chars
e e.g. VFS, Is
» Be careful when testing long filenames!
- dd is useful for creating large test files
e dd if=/dev/zero of=200k bs=1024 count=200
- df is useful to check you're freeing
everything correctly

i Gcc warning

e gcc might insert extra space into structs
* How big do you think this is?

struct test { char a; int b; }

e Why is this a problem?
e What if test represents something you want on disk?
e.g. directory entries
« Discrepancy between the disk layout and memory layout

e Fix:
struct test2 {
char a;
int b;

} __attribute__ ((packed));

+ sizeof (test2) is now 5

