CSE 451: Operating Systems
Autumn 2008

Course Introduction

Hank Levy

Today’s agenda

* Administrivia
— course overview
« course staff
« general structure
« your to-do list
« OS overview
— functional
* resource mgmt, major issues
— historical
« batch systems, multiprogramming, time shared OS’s
« PCs, networked computers

9/23/2008 HML

Course overview

» Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/education/courses/451/CurrentQtr

9/23/2008 HML

« But to tide you over for the next hour ...
— course staff
« Hank Levy
« Roxana Geambasu (grad TA)
« Nick Hunt (ugrad TA)
« Kristin Lee (ugrad TA)

— general structure

read the text prior to class

class will supplement rather than regurgitate the text
sections will focus on the project

we really want to encourage discussion, both in class and in
section

9/23/2008 HML




— your to-do list ...

please read the entire course web thoroughly, today

please get yourself on the cse451 email list, today, and check
your email daily

homework 1 (reading + problems) will be posted on the web
today; due Monday

.

in section on Thursday (tomorrow); due a week from Friday

9/23/2008 HML

project 1 will be posted on the web Friday and will be discussed

More about 451

This is really (at least!) two classes:

— A classroom/textbook part (mainly run by me)

— A project part (mainly run by the TAs)

In a perfect world, we would do this as a two-quarter sequence
The world isn't perfect ©

Sometimes the projects and the lectures will mesh, sometimes
they won't
But in any case, you will have to keep up with both the
classroom and the projects
There will be a lot of work
But you will learn a lot

In the end, you'll understand much more deeply how computers
work

9/23/2008 HML 6

What is an Operating System?

« An operating system (OS) is:
— a software layer to abstract away and manage details of
hardware resources
— aset of utilities to simplify application development

Applications
0s

Hardware

— “all the code you didn’t write” in order to implement your
application

« Keyidea: virtualization of resources

9/23/2008 HML

The OS and hardware

An OS mediates programs’ access to hardware
resources

Computation (CPU)

— Volatile storage (memory) and persistent storage (disk, etc.)

— Network communications (TCP/IP stacks, ethernet cards, etc.)
— Input/output devices (keyboard, mouse, display, sound card, ..)
The OS abstracts hardware into logical resources and
well-defined interfaces to those resources

— processes (CPU, memory)

files (disk)

programs (sequences of instructions)

— sockets (network)

9/23/2008 HML 8




Why bother with an OS?

« Application benefits
— programming simplicity
« see high-level abstractions (files) instead of low-level hardware
details (device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
« device independence: 3Com card or Intel card?
¢ User benefits
— safety
« program “sees” own virtual machine, thinks it owns computer
+ OS protects programs from each other (what if one crashes?)
+ OS fairly multiplexes resources across programs
— efficiency (cost and speed)
+ share one computer across many users
« concurrent execution of multiple programs

9/23/2008 HML 9

The major OS issues

« structure: how is the OS organized?

« sharing: how are resources shared across users?

* naming: how are resources named (by users or programs)?

« security: how is integrity of the OS and its resources ensured?
« protection: how is one user/program protected from another?
« performance: how do we make it all go fast?

« reliability: what happens if something goes wrong (either with
hardware or with a program)?

« extensibility: can we add new features?
« communication: how do programs exchange information,
including across a network?

9/23/2008 HML 10

More OS issues...

« concurrency: how are parallel activities (computation and 1/0)
created and controlled?

« scale and growth: what happens as demands or resources
increase?

« persistence: how do you make data last longer than program
executions?

« distribution: how do multiple computers interact with each
other? how do we make distribution invisible?

« accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are a huge number of engineering tradeoffs
in dealing with these issues!

9/23/2008 HML 11

Hardware/Software Changes with Time

* 1960s: mainframe computers (IBM)

¢ 1970s: minicomputers (DEC)

* 1980s: microprocessors and workstations (SUN)

* 1990s: PCs (rise of Microsoft, Intel, then Dell)

« 2000: Internet Services / Clusters (Amazon)

* 2006: General Cloud Computing (Google, Amazon)

e 2020: it's up to you!!

9/23/2008 HML 12




Is there anything new?

« New challenges constantly arise

— embedded computing (e.g., iPod, GPS)

— sensor networks (very low power, memory, etc.)

— peer-to-peer systems (Kazaa, BitTorrent, etc.)

— ad-hoc networking

— global-scale server farms / cloud computing (e.g., Amazon
EC2, Google)

— software for utilizing huge clusters (e.g., MapReduce,
Bigtable, GFS)

— overlay networks (e.g., PlanetLab)

— worms

— finding bugs in system code (e.g., model checking)

9/23/2008 HML 13

Protection and security as an example

¢ none

« OS from my program

« your program from my program

* my program from my program

« access by intruding individuals

« access by intruding programs

« denial of service

« distributed denial of service

« spoofing

¢ spam

e worms

* viruses

« cross-site scripting attacks (in the browser)

« stuff you download and run knowingly (bugs, trojan horses)
« stuff you download and run unknowingly (cookies, spyware)

9/23/2008 HML 14

OS history

+ In the very beginning...

— OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

— interfaces were literally switches and blinking lights
¢ And then came batch systems

— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
« job gets executed
< output is printed, including a dump of memory (why?)
* repeat...

— card readers and line printers were very slow
+ so CPU was idle much of the time (wastes $$)

9/23/2008 HML 15

Spooling

« Disks were much faster than card readers and
printers

« Spool (Simultaneous Peripheral Operations On-Line)
— while one job is executing, spool next job from card reader
onto disk
« slow card reader 1/0 is overlapped with CPU
— can even spool multiple programs onto disk
« OS must choose which to run next
« job scheduling
— but, CPU still idle when a program interacts with a peripheral
during execution
— buffering, double-buffering

9/23/2008 HML 16




Multiprogramming

« Toincrease system utilization, multiprogramming
OSs were invented
— keeps multiple runnable jobs loaded in memory at once
— overlaps /O of a job with computing of another

« while one job waits for I/O completion, OS runs instructions
from another job
— to benefit, need asynchronous 1/O devices
+ need some way to know when devices are done
— interrupts
— polling
— goal: optimize system throughput
« perhaps at the cost of response time...

9/23/2008 HML

17

Timesharing

« To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput
« Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g. editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)
« MIT Multics system (mid-1960’s) was the first large
timeshared system
— nearly all OS concepts can be traced back to Multics

9/23/2008 HML 18

Timesharing

¢ Inearly 1980s, a single
timeshared VAX/780 (like
the one in the Allen Center

atrium) ran computing for the W [
i VA

entire CSE department.

« Atypical VAX/780 was 1

MIPS (1 MHz) and had s

16MB of RAM and 100MB of
disk.

« AniPhone is 400 MIPS, has
128MB of RAM (way too little
though) and 8GB of disk.

9/23/2008 HML

19

Parallel systems

* Some applications can be written as multiple parallel
threads or processes
— can speed up the execution by running multiple
threads/processes simultaneously on multiple CPUs
[Burroughs D825, 1962]
— need OS and language primitives for dividing program into
multiple parallel activities
— need OS primitives for fast communication among activities
« degree of speedup dictated by communication/computation
ratio
— many flavors of parallel computers today
* SMPs (symmetric multi-processors, multi-core)
* SMT (simultaneous multithreading [*hyperthreading”]
* MPPs (massively parallel processors)
+ NOWs (networks of workstations) [clusters]

« computational grid (SETI @home)

9/23/2008 20




Personal computing

Primary goal was to enable new kinds of interactive
applications

Bit-mapped display [Xerox Alto,1973]
— New graphic/visual apps

— new input device (the mouse)

Move computing near the display

— why?
Window systems

— the display as a managed resource
Local area networks [Ethernet]

— why?

Effect on OS?

9/23/2008 HML 21

Distributed OS

« distributed systems to facilitate use of geographically
distributed resources
— workstations on a LAN
— servers across the Internet
— 10,000 node cluster in a machine room
* supports communications between jobs
— interprocess communication
« message passing, shared memory
— networking stacks
« sharing of distributed resources (hardware, software)
— load balancing, authentication and access control, ...
« speedup isn't always the issue
— access to diversity of resources is goal
— fault tolerance

9/23/2008 HML 22

Embedded OS

« Pervasive computing
— cheap processors embedded everywhere
— how many are on your body now? in your car?
— cell phones, PDAs, games, iPod, network computers, ...
« Typically very constrained hardware resources
— slow processors
— small amount of memory
— no disk or tiny disk
— typically only one dedicated application
— limited power

« But technology changes fast
— embedded CPUs are getting faster
— storage is growing rapidly

9/23/2008 HML 23

CSE 451

« In this class we will learn:
— what are the major components of most OS’s?
— how are the components structured?
— what are the most important (common?) interfaces?
— what policies are typically used in an OS?
— what algorithms are used to implement policies?
« Philosophy
— you may not ever build an OS
— but as a computer scientist or computer engineer you need
to understand the foundations
— most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make
throughout your careers — compromises among and within
cost, performance, functionality, complexity, schedule ...

9/23/2008 HML 24




