CSE 451: Operating Systems
Spring 2005

Module 22
Operating System Security

Ed Lazowska
lazowska@cs.washington.edu
Allen Center 570

Outline

« Overarching goal: safe sharing

¢ Trusted Computing Base (TCB)
« General principles

« Authentication

¢ Authorization

* Reference Monitors

« Contemporary security problems

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Safe sharing

* Protecting a single computer with one user is easy
— Prevent everybody else from having access
— Encrypt all data with a key only one person knows

« Sharing resources safely is hard

— Preventing some people from reading private data (e.g.,
grades)

— Prevent some people from using too many resources (e.g.,
disk space)

— Prevent some people from interfering with other programs
(e.g., inserting key strokes / modifying displays)

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Why is security hard?

* Security slows things down
« Security gets in the way
« Security adds no value if there are no attacks

* Only the government used to pay for security
— the Internet made us all potential victims
¢ Bugs R Us

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Principle of Least Privilege

« Figure out exactly which capabilities a program
needs to run, and grant it only those
— not always easy, but: start out granting none, run program,
and see where it breaks. add new privileges as needed.
« Unix: concept of root is not a good example of this

— some programs need to run as root just to get a small
privilege, such as running with a port < 1024
* e.g., ftpd

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Principle of Complete Mediation

« Check every access to every object
— in rare cases, can get away with less (caching)
« but only if sure nothing relevant in environment has
changed...and there is a lot that's relevant!
* e.g., NFS and file handles
— NFS is not a good example of complete mediation
— NFS protocol:
« client contacts remote “mountd” to get a filehandle to a
remotely exported NFS filesystem
— this is done when remote system is mounted
— remote mountd checks access control at mount time
« filehandle is a capability: client presents it to read/write file
— access control is not checked after mount time!
« use network sniffer to get filehandle
— access exported filesystem without access control check

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Principle of Fail-Safe Defaults

« Start by denying all access, then allow only that
which has been explicitly permitted
— oversights will then show up as “false negatives”
« somebody is denied access that should be given it
— opposite leads to “false positives”
« somebody is given access that shouldn't get it
« bad guys usually don't report this kind of failure...
* Examples:
— Irix shipped with “xhost +" by default

« Allows the world to open windows on your screen and grab the
keystrokes you type

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 7

“Security through Obscurity” = bad

« Security through obscurity
— attempting to gain security by hiding the implementation details of a
system
— claim: a secure system should be secure even if all implementation
details are published
« in fact, a system grows more secure as people scour over
implementation details and find flaws
« rely on mathematics and sound design to keep secure
« Counterexample: GSM cell phones
— GSM committee designed their own crypto algorithm, but hid it from
the world - “impossible to clone”
« social engineering + reverse engineering revealed the algorithm
« it turned out to be very weak

— could essentially play questions with identity chip on cell phone, and
eventually leam its secret key in a few hours

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

Trusted Computing Base (TCB)

Think carefully about what you are trusting with your information
— if you type your password on a keyboard, you're trusting:
« the keyboard manufacturer
« your computer manufacturer
« your operating system
« the password library
« the application that's checking the password
— how about typing your credit card number to a web service?
« how about giving your credit card to a waiter?
TCB = set of components (hardware, software, wetware) that
you trust your secrets with
Public web kiosks should *not* be in your TCB
— should your OS? (IE and Active-X extensions)
— ow about your compiler?
« agreat read: “Reflections on Trusting Trust”

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 9

Security techniques

» Authentication (who are you) — identifying users and

programs

e Authorization (what are you allowed to do) —

determining what access users and programs have to
things
— complete mediation: check every access to every protected
object

» Auditing (what's been going on) — record what users

and programs are doing for later analysis

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 10

Authentication

* How does a computer know who | am?

— user name / password
+ how does it store the password?
+ how does it check the password?
« how secure is a password?

— public/private keys

— one-time keys

— biometrics

« What does the computer do with this information?

— assign you an identifier
* UNIX: 32 bit number stored in process structure

* Windows NT: 27 byte number, stored in an access token in
kernel

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 11

Aside on Encryption

encryption key (k1) decryption key (k2)

plaintext (M) ciphertext (C)

plaintext

Encryption: takes a key and data and creates ciphertext: E,;(M) = C
Decryption: takes ciphertext and a key and recovers data: Dy,(C) = M
Symmetric algorithms (aka secret-key algorithms):

— k1 =k2 (or can get k2 from k1)
Public-Key Algorithms

— decryption key (k2) cannot be calculated from encryption key (k1)

— encryption key can be made public!

« encryption key = “public key", decryption key = “private key"

Hashing: takes data and creates a fixed-size fingerprint, or hash

— H(Attack at Dawn) = 183870

— H(attack at dawn) = 465348

— Can't determine data from hash or find two pieces of data with same hash

5/31/2005 ©2005 Gribble, Lazowska, Levy, Swift 12

Storing passwords

¢ CTSS (1962): password file {user name, user
identifier, password}

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “lofotc2n”

If a bad guy gets hold of the password file, you're in
deep trouble!

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 13

¢ Unix (1974): encrypt passwords with passwords

. Bob: 14: S6Uu0cYDVATAK
=DOlatiison David: 15: J2Z14ndBL6X.M
Mary: 16: VW2bqvTalBJKg

David’s password, “allison,” is encrypted using itself
as the key and stored in that form. Password can be
checked by the system. No problem if someone
steals the file — except for dictionary attacks

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 14

¢ Unix (1979): salted passwords

K=[0011: Bob: 14: T7Vs1dZEWeRcL.: 45
~Hallison392 David: 15: K3AJ50cCMA4ZMS$: 392
Mary: 16: WX3crwUbmCKLf: 152

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 15

Guessing passwords

« 26 letters used, 7 letters long
— 8 billion passwords (33 bits)
— Checking 100,000/second breaks in 22 hours
« System should make checking passwords slow
« But most people’s passwords are not random
sequences of letters!
— girlfriend’s/boyfriend’s/spouse’s/dog’s name
« Dictionary attacks have traditionally been incredibly
easy

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 16

Making it harder

* Using symbols and numbers and longer passwords
— 95 characters, 14 characters long
— 1027 passwords = 91 bits
— Checking 100,000/second breaks in 104 years
* Require frequent changing of passwords
— guards against loaning it out, writing it down, etc.

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 17

Do longer passwords work?

« People can’'t remember 14-character strings of
random characters

* People write down difficult passwords
* People give out passwords to strangers
« Passwords can show up on disk

« If you are forced to change your password
periodically, you probably choose an even dumber
one
— “feb04” “mar04” “apr04”

* How do we handle this in CSE?

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 18

Cool password attack

* VMS password checking flaw

— password checking algorithm:

for (1=0; I<password.length(); I++) {
if password[1] == supplied_password[I]
return false;

3
return true;

— can you see the problem?
« hint: think about virtual memory...
« another hint: think about page faults...

« final hint: who controls where in memory supplied_password
lives?

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift

19

Login spoofers

« Login spoofers are a specialized class of Trojan
horses
— Can be circumvented by requiring an operation that
unprivileged programs cannot perform
— E.g. start login sequence with a key combination user
programs cannot catch, CTRL+ALT+DEL on Windows

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 20

Sniffing passwords

« Incredibly, until just a couple of years ago we all
entered cleartext passwords on the network!
— including wireless LANs, where packet sniffing is duck soup!

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 21

Authorization

* How does the system know what I'm allowed to do?
— logically, an authorization matrix:
« objects = things that can be accessed
« subjects/principals = things that can do the accessing (users or

programs)
Alice Bob Carl
/homes Read Read Read
Write Write Write
usr None None Read
5/31/2005

© 2005 Gribble, Lazowska, Levy, Swift 22

< Actual implementation is either
— Access Control Lists (ACLs)
— capabilities
(discussed back when we did file systems)
* Most systems use both, in different circumstances

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 23

Modern security problems

« Confinement
— How do I run code that I don't trust?
« e.g., RealPlayer, Flash
— How do | restrict the data it can communicate?
— What if trusted code has bugs?
« e.g., Internet Explorer
« Concept of “Least Privilege”

— programs should only run with the minimal amount of privilege
necessary

« Solutions
— Restricted contexts — let the user divide their identity
— ActiveX — make code writer identify self
— Java — use a virtual machine that intercepts all calls
— Binary rewriting — modify the program to force it to be safe

5/31/2005 ©2005 Gribble, Lazowska, Levy, Swift 24

Restricted contexts

¢ Add extra identity information to a process
— e.g., both username and program name (mikesw:navigator)
« Use both identities for access checks

— add extra security checks at system calls that use program
name

— add extra ACLs on objects that grant/deny access to the
program
« Allows users to sub-class themselves for less-trusted
programs

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 25

ActiveX

« All code comes with a public-key signature
« Code indicates what privileges it needs

* Web browser verifies certificate

« Once verified, code is completely trusted

_

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 26

Java

« All problems are solved by a layer of indirection

— All code runs on a virtual machine

— Virtual machine tracks security permissions

— Allows fancier access control models - allows stack walking
« JVM doesn’t work for other languages
< Virtual machines can be used with all languages

— Run virtual machine for hardware

— Inspect stack to determine subject for access checks

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 27

Binary rewriting

* Goal: enforce code safety by embedding checks in
the code

« Solution:
— Compute a mask of accessible addresses
— Replace system calls with calls to special code

Original Code: Rewritten Code:

Iw $a0, 14($s4b) and $t6,%$s4,0x001FFf0
jal ($sb5) Iw $a0, 14($t6)

move $a0, $vO and $t6,$s5, Ox001fFfO
jal $printf jal (st6)

move $a0, $vO
Jjal $sfi_printf

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 28

Attacks: Trojan Horses

* A malicious program disguised as an innocent one
« Login spoofers are a specialized class of Trojan
horses

— Can be circumvented by requiring an operation that
unprivileged programs cannot perform

— E.g. Start login sequence with a key combination user
programs cannot catch, CTRL+ALT+DEL on Windows

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 29

Attacks: Viruses and Worms

« Viruses: passive code attached to other programs
— E.g. a program that modifies MS Word
« Worms: code that actively replicates itself and does
not depend on the execution of another program to
spread
— E.g. the Internet worm
« Buffer overflow
— C string libraries hard to use correctly
* e.g. easy to write outside string bounds
— Most OS code is written in C, many systems have
vulnerabilities
— If a string is stored on the stack, someone can modify the
behavior of a program by going off the end of the string and
changing a return address stored on stack

5/31/2005 ©2005 Gribble, Lazowska, Levy, Swift 30

Attacks: Denial of service

Attacker sends legitimate-looking requests for service

to a service provider

Service provider commits the necessary resources to

provide the service

— Ports, buffer space, bandwidth

The resources are wasted, legitimate users get

diminished service

— Usually launched from many computers controlled by
attackers

Possible whenever the cost to ask for service is far

cheaper than the cost of providing it

— Challenge-response mechanism

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 31

