
1

CSE 451: Operating Systems
Spring 2005

Module 22
Operating System Security

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 2

Outline

• Overarching goal: safe sharing
• Trusted Computing Base (TCB)
• General principles
• Authentication
• Authorization
• Reference Monitors
• Contemporary security problems

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 3

Safe sharing

• Protecting a single computer with one user is easy
– Prevent everybody else from having access
– Encrypt all data with a key only one person knows

• Sharing resources safely is hard
– Preventing some people from reading private data (e.g.,

grades)
– Prevent some people from using too many resources (e.g.,

disk space)
– Prevent some people from interfering with other programs

(e.g., inserting key strokes / modifying displays)

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 4

Why is security hard?

• Security slows things down
• Security gets in the way
• Security adds no value if there are no attacks
• Only the government used to pay for security

– the Internet made us all potential victims

• Bugs R Us

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 5

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– not always easy, but: start out granting none, run program,

and see where it breaks. add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need to run as root just to get a small

privilege, such as running with a port < 1024
• e.g., ftpd

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 6

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has
changed…and there is a lot that’s relevant!

• e.g., NFS and file handles
– NFS is not a good example of complete mediation
– NFS protocol:

• client contacts remote “mountd” to get a filehandle to a
remotely exported NFS filesystem

– this is done when remote system is mounted
– remote mountd checks access control at mount time

• filehandle is a capability: client presents it to read/write file
– access control is not checked after mount time!

• use network sniffer to get filehandle
– access exported filesystem without access control check

2

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 7

Principle of Fail-Safe Defaults

• Start by denying all access, then allow only that
which has been explicitly permitted
– oversights will then show up as “false negatives”

• somebody is denied access that should be given it
– opposite leads to “false positives”

• somebody is given access that shouldn’t get it
• bad guys usually don’t report this kind of failure…

• Examples:
– Irix shipped with “xhost +” by default

• Allows the world to open windows on your screen and grab the
keystrokes you type

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 8

“Security through Obscurity” = bad

• Security through obscurity
– attempting to gain security by hiding the implementation details of a

system
– claim: a secure system should be secure even if all implementation

details are published
• in fact, a system grows more secure as people scour over

implementation details and find flaws
• rely on mathematics and sound design to keep secure

• Counterexample: GSM cell phones
– GSM committee designed their own crypto algorithm, but hid it from

the world - “impossible to clone”
• social engineering + reverse engineering revealed the algorithm
• it turned out to be very weak

– could essentially play questions with identity chip on cell phone, and
eventually learn its secret key in a few hours

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 9

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system
• the password library
• the application that’s checking the password

– how about typing your credit card number to a web service?
• how about giving your credit card to a waiter?

• TCB = set of components (hardware, software, wetware) that
you trust your secrets with

• Public web kiosks should *not* be in your TCB
– should your OS? (IE and Active-X extensions)
– ow about your compiler?

• a great read: “Reflections on Trusting Trust”

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 10

Security techniques

• Authentication (who are you) – identifying users and
programs

• Authorization (what are you allowed to do) –
determining what access users and programs have to
things
– complete mediation: check every access to every protected

object

• Auditing (what’s been going on) – record what users
and programs are doing for later analysis

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 11

Authentication

• How does a computer know who I am?
– user name / password

• how does it store the password?
• how does it check the password?
• how secure is a password?

– public/private keys
– one-time keys
– biometrics

• What does the computer do with this information?
– assign you an identifier

• UNIX: 32 bit number stored in process structure
• Windows NT: 27 byte number, stored in an access token in

kernel

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 12

Aside on Encryption

• Encryption: takes a key and data and creates ciphertext: Ek1(M) = C
• Decryption: takes ciphertext and a key and recovers data: Dk2(C) = M
• Symmetric algorithms (aka secret-key algorithms):

– k1 = k2 (or can get k2 from k1)
• Public-Key Algorithms

– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Hashing: takes data and creates a fixed-size fingerprint, or hash
– H(Attack at Dawn) = 183870
– H(attack at dawn) = 465348
– Can’t determine data from hash or find two pieces of data with same hash

encryption decryptionplaintext (M) ciphertext (C) original
plaintext

encryption key (k1) decryption key (k2)

3

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 13

• CTSS (1962): password file {user name, user
identifier, password}

If a bad guy gets hold of the password file, you’re in
deep trouble!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 14

• Unix (1974): encrypt passwords with passwords

David’s password, “allison,” is encrypted using itself
as the key and stored in that form. Password can be
checked by the system. No problem if someone
steals the file – except for dictionary attacks

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[0]allison

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 15

• Unix (1979): salted passwords

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

Bob: 14: T7Vs1dZEWeRcL: 45
David: 15: K3AJ5ocCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

K=[0]allison392

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 16

Guessing passwords
• 26 letters used, 7 letters long

– 8 billion passwords (33 bits)
– Checking 100,000/second breaks in 22 hours

• System should make checking passwords slow

• But most people’s passwords are not random
sequences of letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name

• Dictionary attacks have traditionally been incredibly
easy

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 17

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 18

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password

periodically, you probably choose an even dumber
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?

4

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 19

Cool password attack

• VMS password checking flaw
– password checking algorithm:

for (I=0; I<password.length(); I++) {
if password[I] == supplied_password[I]

return false;

}

return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint: think about page faults…
• final hint: who controls where in memory supplied_password

lives?

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 20

Login spoofers

• Login spoofers are a specialized class of Trojan
horses
– Can be circumvented by requiring an operation that

unprivileged programs cannot perform
– E.g. start login sequence with a key combination user

programs cannot catch, CTRL+ALT+DEL on Windows

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 21

Sniffing passwords

• Incredibly, until just a couple of years ago we all
entered cleartext passwords on the network!
– including wireless LANs, where packet sniffing is duck soup!

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 22

Authorization

• How does the system know what I’m allowed to do?
– logically, an authorization matrix:

• objects = things that can be accessed
• subjects/principals = things that can do the accessing (users or

programs)

ReadNoneNone/usr

Read
Write

Read
Write

Read
Write

/homes

Read
Write

ReadRead/etc
CarlBobAlice

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 23

• Actual implementation is either
– Access Control Lists (ACLs)
– capabilities

(discussed back when we did file systems)
• Most systems use both, in different circumstances

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 24

Modern security problems

• Confinement
– How do I run code that I don’t trust?

• e.g., RealPlayer, Flash
– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• e.g., Internet Explorer
• Concept of “Least Privilege”

– programs should only run with the minimal amount of privilege
necessary

• Solutions
– Restricted contexts – let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting – modify the program to force it to be safe

5

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 25

Restricted contexts

• Add extra identity information to a process
– e.g., both username and program name (mikesw:navigator)

• Use both identities for access checks
– add extra security checks at system calls that use program

name
– add extra ACLs on objects that grant/deny access to the

program

• Allows users to sub-class themselves for less-trusted
programs

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 26

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 27

Java

• All problems are solved by a layer of indirection
– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models - allows stack walking

• JVM doesn’t work for other languages
• Virtual machines can be used with all languages

– Run virtual machine for hardware
– Inspect stack to determine subject for access checks

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 28

Binary rewriting

• Goal: enforce code safety by embedding checks in
the code

• Solution:
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw $a0, 14($s4)
jal ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw $a0, 14($t6)
and $t6,$s5, 0x001fff0
jal ($t6)
move $a0, $v0
jal $sfi_printf

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 29

Attacks: Trojan Horses

• A malicious program disguised as an innocent one
• Login spoofers are a specialized class of Trojan

horses
– Can be circumvented by requiring an operation that

unprivileged programs cannot perform
– E.g. Start login sequence with a key combination user

programs cannot catch, CTRL+ALT+DEL on Windows

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 30

Attacks: Viruses and Worms

• Viruses: passive code attached to other programs
– E.g. a program that modifies MS Word

• Worms: code that actively replicates itself and does
not depend on the execution of another program to
spread
– E.g. the Internet worm

• Buffer overflow
– C string libraries hard to use correctly

• e.g. easy to write outside string bounds
– Most OS code is written in C, many systems have

vulnerabilities
– If a string is stored on the stack, someone can modify the

behavior of a program by going off the end of the string and
changing a return address stored on stack

6

5/31/2005 © 2005 Gribble, Lazowska, Levy, Swift 31

Attacks: Denial of service

• Attacker sends legitimate-looking requests for service
to a service provider

• Service provider commits the necessary resources to
provide the service
– Ports, buffer space, bandwidth

• The resources are wasted, legitimate users get
diminished service
– Usually launched from many computers controlled by

attackers

• Possible whenever the cost to ask for service is far
cheaper than the cost of providing it
– Challenge-response mechanism

