CSE451 Section 2

10/4/07
Aziel Epilepsia

Goals of today

e Go over some questions from the homework
* Review GDB

— What's available and how to use it to debug your
projects

Start off

C Review:

— Planning on a session Friday afternoon/night.
— Focus on basics, for those who feel lost

— Email me at aziel@u if you are interested.

Questions on anything?
Feedback from project 0 and homework 17
— Useful? Busy work?

How confident are you in what you learned from
project 07

Homework 1

Return HW1
Mean is 24.8/27.

Each problem is graded on 0 — 3 scale.
Worth 10% of the total course grade

Homework Review

e Some comments on the questions:
e 2.7 —Why is the command interpreter
separate from the kernel?

— Allows Cl to be changed without changing the
kernel

 Otherwise, students had no problem with
homework

Requests from graders

e Write section#, HW#, and date on the
homework

* Write legibly or type it up

— If the grader can’t read your handwriting easily,
he/she will mark it wrong.

e Hand it in on time

— Due beginning of lecture on the day stated

GDB

e GNU Debugger

* Online manual available at:
— http://sourceware.org/gdb

e Material discussed in this section will be a
condensed version of the online
documentation

Goals of the debugger

 Help find sources of error in the program

 Debugger provides methods to:
— Control program execution
— View system state during program execution

Debugging programs in GDB

* Requirements:

— Compiled binaries
 Multiple object files rolled into an executable

— Example makefile included in Backup Section

* Execution:
— From command line: gdb

* Prompt should now be <gdb>

— To load program, type
file [programName]

Startup

Execute GDB

— From command line: gdb

— To run gdb and load program from command line:
gdb [filename]

Once GDB is running, prompt will become

<gdb>

From the <gdb> prompt we can do the following:
— View the current source being stepped through
— Set breakpoints in program
— Run program and step through code
— Examine data

Viewing source

e Source can be viewed in GDB using the list
command (shorthand is)

— 1 lTinenumber

* Print lines centered around the line number in the current
source file

— 1 function
e Print lines centered around the function
— 1 — (I [minus])
e Print lines just before the lines last printed
— 1
e Print lines around the last instruction executed
e OR, print more lines after the last lines printed

Setting breakpoints

 We can set breakpoints in two useful ways:

— By function name
 break foo
 break queue_remove
 break queue_append

— By file name and line number
« break main.c:10
 break queue.c:127

e Shorthand for breakis b
e b foo
e b main.c:10

Running into breakpoints

After breakpoints have been set, we can type run to
execute the program until the first breakpoint

Once the breakpoint has been reached, you will see text
such as

— Breakpoint 1, queue remove (g=0x804a008,
olde=0x804a008) at queue.c:62
62 assert(g "= NULL);

This provides the following information:
— Which breakpoint was reached
— Which function execution halted in
— The source file and line number
— The line of code to be executed next

Stepping through code

e After the breakpoint has been reached, we
can step through code using the following
commands

—stepors

e step through code until a new source line is reached
(will step into function calls, provided source was
compiled with —g flag)

—nextorn

e step through code until a new source line in the current
stack frame is reached (all function calls that occur
inside that line are executed without stopping)

Examining data (1)

e Data can be examined during program execution based on
scope rules

* You can use the variable names in the function currently
being executed

I.e.

boolean_t
queue_remove(queue_t g, queue_element_t *e)

{

queue_link_t oldHead;
*e = g->head->e;

oldHead = g->head;
gq->head = g->head->next;
return TRUE;

}

Examining data (2)

Works for pointers. Example results:
— print g
« $1 = (queue_t) 0x804a008
— print *q
« $2 = {head = 0x804a018}
— print g->head
« $3 = (queue_link t) 0x804a018
— print *g->head
e $4 = {e = 0x8049aa8, next = 0x804a028}

When printing pointers, you can print the address, or dereference
the members of the pointer.

Shorthand for print is p

- P9
— p *q->head

Display formats (1)

* You can change the display format of the data
— p*g->head
e $4 = {e = 0xB8049aa8, next
- p /d *g->head
e $6 = {e = 134519464, next = 134520872}
- p /t *g->head

« $7 = {e = 1000000001001001101010101000,
next = 1000000001001010000000101000}

- p /a *g->head

« $8 = {& = 0xB8049aa8 <x>, next = 0x804a028}
- p /c *g->head

e $9 = {& = -88 """, next = 40 "("}

0x804a028}

Display formats (2)

Display formats

— /X, regard data as an integer, print integer as
hexadecimal

— /d, signed decimal

— /U, unsigned decimal
— /t, binary

— /3, address

— /C, regard data as integer, and print as a char

Examining memory

e Data stored in memory is accessible via the X command (‘x’ for examine)
— X /nfu addr

e Memory reads can be formatted by specifying
— N, the repeat count (how many units of memory to display)
— T, the display format (discussed earlier)

— U, the unit size
* b, bytes
* h, halfwords (2 bytes)
e W, words (4 bytes)
* (@, giant words (8 bytes)

e Example:

— X /1lub OxOOOOTfFff
* Read the memory at 0x0000ffff, and display one byte as an unsigned integer

— X /2tw OxXOOOOffff
* Read the memory at 0x0000ffff, and display 2 words as an unsigned integer

Summary of GDB slides

e Discussed commands available and necessary
for basic debugging:
— Viewing source
— Breakpoint setting
— Execution control
— Examining data

Project 1 is up

e Start looking at it now!
e Write a shell

Resources

e GDB
— http://sourceware.org/gdb/

e Make and makefile

— http://users.actcom.co.il/~choo/lupg/tutorials/wri
ting-makefiles/writing-makefiles.html

BACKUP

Following this slide are backup slides

Creating a Makefile

e Discuss creating a make file for local testing

Makefile from ProjO (1)

CC= gcc

CFLAGS= -wall -0 -g
SRCS= main.c queue.c
OBJS= main.o queue.o
PROGRAM= queuetest
MKDEP= gccmakedep

${PROGRAM} : ${0BJS}
${CC} ${CFLAGS} ${OBJIS} -0 ${PROGRAM}

.0 - %.cC
$(CC) $(CFLAGS) -c $<

clean:
rm -f ${0BJS} ${PROGRAM}

depend:
${MKDEP} ${CFLAGS} ${SRCS}

Makefile from Proj0 (2)

CC: compiler definition (in this case gcc)
CFLAGS: flags for the C compiler.
— Wall: display all warnings
— O:level 1 code optimization,
e Higher optimization levels reduces output code size while increasing compile time and making code harder or impossible to debug
— g:include debugging information in code

SRCS: source files

OBJS: output object files

PROGRAM: the name of the program being compiled

MKDEP: dependency list creator (in this case, gccmakedep — gcc with —M flag)

SPROGRAM... : lists the contents of the program and the command for compiling it

%.0 -> %.c ... : lists the dependencies of the object files on which source files, and the command for recompiling
— % is awildcard character, $< refers to a list of dependencies matching the rule (in this case, the target filename)
— i.e. %.0 must be recompiled whenever %.c is modified, using “gcc ~-Wall -0 -g —c” [list of files matching rule]

clean: ... : defines the action to take when make —clean is called
— remove all object and program files

depend: ... : defines the action to take to populate dependencies. Output of this is stored in Makefile unless
otherwise specified.

