typedef void (*function_ t)(void);
void dispatch(function t* funcs, void* args, int ct) {

int i = 0;
while (i<ct) {
if (funcs[i](args[i]) == NULL)
break;
else
i++;
}
}
[/ =———————— Problem 2-—————
// data structures
void** stack; // An array representing our stack
// implementation. Assume it's been
// initialized.
int sp; // Assume this is set to the index of the array
// that is the top of the stack
// Starts indexing at sp = 1 so if sp == 0 the
// stack is empty.
int size; // Maximum size of the stack (doesn't change)

pthread mutex lock;
condition not full, not empty;

// returns the value of the element popped off the stack
void *pop() {
void* element;

acquire(lock);
if (sp > 0) {
*element = stack[sp--];
} else {
element = NULL;
}
release(lock);
return element;

}

void push(void *element) {

acquire(lock);

if (sp == size || !element) return; // stack is full || element's
got nada

stack[++sp] = *element;

release(lock);

/* There are two acceptable solutions to problem 3 and they are both
below. Commonly, people dropped the use of the locks altogether which
isn't correct. Also, they'd only get the lock after the wait rather
than before it (and they must pass the locked lock as a parameter to
the wait). Another common problem was code that always waited without
testing a condition first. Some people confused Mesa and Hoare
semantics, some used ambiguous labels for condition variables (such as
using one cond variable signifying both not_ empty and not full: it
works if you write it very carefully but only one person did this

successfully. Others used full and empty instead of not_ full or

not _empty and that's not a great idea either). There was also a lot of
confusion about using void* types.

*/

// data structures

void** stack;

int sp;

int size;

pthread mutex lock;

condition not_ full, not empty;

// returns the value of the element popped off the stack
void *pop() {
void* element;
acquire(lock);
if (sp == 0) // sp == 0 means the stack is empty
wait (not empty, lock);

*element = stack[sp--];
signal(not_full);

release(lock);
return element;

}

void push(void *element) {
if (!element) return;

acquire(lock);
if (sp == size)
wait(not_ full, lock);

stack[++sp] = *element;
signal (not_empty);
release(lock);

/*
* PROBLEM 3 WITH IMPLICIT MUTEXES
*/

Monitor stack({
// data structures
void** stack;
int sp;
pthread mutex lock;
condition not_ full, not_empty;

// returns the value of the element popped off the stack
void *pop() {
// ENTER MONITOR
void* element;
if (sp == 0) // sp == 0 means the stack is empty
wait (not empty);

*element = stack[sp--];
signal(not_full);

// EXIT MONITOR
return element;

}

void push(void *element) {
if (!element) return;

// ENTER MONITOR
if (sp == size)
wait(not_ full);

stack[++sp] = *element;
signal (not_empty);
// EXIT MONITOR

s C1fSr Ci+ :’;{‘ﬂr'éj

Proof:
* Forany schedulingalgorithm thatis not"shortest job first", there willbe a job, 5f, thatis longerthan 5g.
+ Thetotal contribution to average responsetime offandgis
2tp+ 25t + 57
» Iffand g are interchanged (as per5JF), the total contribution to average response time of fand gis
2te+ 25z + 57
* Sincesg < 55, the latter situation (SJF) has shorter average response time

