
1

CSE 451: Operating Systems
Winter 2006

Module 21
Web Servers / Services

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

Web Browsers / Servers: Intro

199.239.137.245
(www.nytimes.com)

128.208.2.93
(peshastin.cs.washington.edu)

128.208.4.202

Fetching http://www.nytimes.com/index.html

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

DNS

� A distributed, hierarchically structured service

� 13 logical �root servers�; some are backed by multiple physical
servers

� Names are resolved from right to left:
www.nytimes.com

� Root servers know about the rightmost names (com, org, edu,
net, etc.)

� They redirect the client to look at the server for �com�, which
redirects to the �nytimes� server, which sends back the address
for �www�

� Caching is used extensively to limit traffic to root (and all)
servers
� Most root server traffic is for mis-typed names

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

Web Servers

� In the simplest case, the URL path is used to locate a
file
� The web server is configured with so that www.nytimes.edu

corresponds to a particular directory in the machine�s file
system

� The rest of the URL path is then traversed in the file system
� The file arrived at this way is returned

� Things are actually more complex, of course.
� The web server actually implements a generalization of

symbolic links � rules that cause URL paths to be rewritten
as they are transformed into file system paths

� The web server also implements its own security system,
independently of that implemented by the file system

� Why?

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

cgi�s

� Quite soon after the web became popular, people
found they needed �dynamic content� � pages whose
content was created programmatically at the time of
the request
� E.g., amazon.com

� No problem � the Web server has rules that indicate
which URLs actually name programs
� When one of these URLs is received, the program is run,

and its output is returned to the client (browser)

� Some (many!) web requests are therefore actually
�calls� that execute remote code

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

Revisiting the Original Scenario: I

Formats and displays pageBrowser

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1
Date: Fri, 02 Jun 2006 06:59:52 GMT
Content-type: text/html
Cache-control: no-cache
Pragma: no-cache

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<title>The New York Times - Breaking News, World News & Multimedia</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>

199.239.137.245 → Browser

GET /index.html HTTP/1.1
Host: www.nytimes.com

Browser → 199.239.137.245 : 80

199.239.137.245DNS Server → Browser

�query www.nytimes.com�Browser → 128.208.4.202 : 53

http://www.nytimes.com/index.htmlUser → Browser

2

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

Revisiting the Original Scenario: II

client browser
web

server

URL

dns
server

Resolve host

IP address

fetch page

return page
display page

We�ve seen this kind of control flow before� It�s procedure call!

Unfortunately, we�re going over a network, so�

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

The Old Fashioned (Current?) Method

Apache

1. Server process starts
2. Server process creates socket and listens for connection
3. Client process starts
4. Client process creates socket and binds it to server socket
5. Server (thread) accepts connection
6. Client formats a message and writes it to socket
7. Server reads from socket, parses messages, executes,

formats a reply, and writes it to socket
8. Client parses reply

Firefox

What about this seems wrong?

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

Remote Procedure Call (RPC)

� Use procedure calls as the model for distributed
(remote) communication
� have servers export a set of procedures that can be called

by client programs
� similar to library API, class definitions, etc.

� clients do a local procedure call, as though they were directly
linked with the server

� under the covers, the procedure call is converted into a
message exchange with the server

� largely invisible to the programmer!

� Interfaces are type checked; data is automatically
packed into messages at sender and unpacked at
receiver

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

� There are a bunch of hard issues:
� how do we make the �remote� part of RPC invisible to the

programmer?
� and is that a good idea?

� what are the semantics of parameter passing?
� what if we try to pass by reference?

� how do we bind (locate/connect-to) servers?
� how do we handle heterogeneity?

� OS, language, architecture, �
� how do we make it go fast?

RPC issues

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

RPC example invocation

Client Program:

…
sum = server->Add(3,4);

…

Server Program:

int Add(int x, int y) {
return x + y;

}

client-side stub:

int Add(int x, int y) {

alloc message buffer;
mark as “add” call;

store x,y in buffer;

send message;
receive response;

unpack response;

return response;
}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
remove x,y from m;

r = Add(x,y);

allocate response buffer;
store r in response;

return response;

}

RPC runtime system:

receive message m;

response = Add_Stub(m);

send response to client;

Topics:
� interface
description

� stubs
� stub
generation

� parameter
marshalling

� binding
� runtime system
� error handling
� performance
� thread pools

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

RPC model

� A server defines the service interface using an
interface definition language (IDL)
� the IDL specifies the names, parameters, and types for all

client-callable server procedures
� example: ASN.1 in the OSI reference model
� example: Sun�s XDR (external data representation)

� A �stub compiler� reads the IDL declarations and
produces two stub procedures for each server
procedure
� the server programmer implements the service�s procedures

and links them with the server-side stubs
� the client programmer implements the client program and

links it with the client-side stubs
� the stubs manage all of the details of remote communication

between client and server using the RPC runtime system

3

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 13

RPC stubs

� A client-side stub is a procedure that looks to the client as if it
were a callable server procedure
� it has the same API as the server�s implementation of the

procedure
� a client-side stub is just called a �stub� in Java RMI

� A server-side stub looks like a caller to the server
� it looks like a hunk of code that invokes the server procedure
� a server-side stub is called a �skeleton� or �skel� in Java RMI

� The client program thinks it�s invoking the server
� but it�s calling into the client-side stub

� The server program thinks it�s called by the client
� but it�s really called by the server-side stub

� The stubs send messages to each other, via the runtime, to
make the RPC happen transparently

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

RPC marshalling

� Marshalling is the packing of procedure parameters
into a message packet
� the RPC stubs call type-specific procedure to marshal or

unmarshal the parameters of an RPC
� the client stub marshals the parameters into a message
� the server stub unmarshals the parameters and uses them to

invoke the service�s procedure
� on return:

� the server stub marshals the return value
� the client stub unmarshals the return value, and returns them to

the client program

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

RPC binding

� Binding is the process of connecting the client to the
server
� the server, when it starts up, exports its interface

� identifies itself to a network name server
� tells RPC runtime that it is alive and ready to accept calls

� the client, before issuing any calls, imports the server
� RPC runtime uses the name server to find the location of the

server and establish a connection

� The import and export operations are explicit in the
server and client programs
� a slight breakdown in transparency

� more to come�

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

RPC transparency

� One goal of RPC is to be as transparent as possible
� make remote procedure calls look like local procedure calls
� we�ve seen that binding breaks this transparency

� What else breaks transparency?
� failures: remote nodes/networks can fail in more ways than

with local procedure calls
� network partition, server crash
� need extra support to handle failures
� server can fail independently from client

� �partial failure�: a big issue in distributed systems
� if an RPC fails, was it invoked on the server?

� performance: remote communication is inherently slower
than local communication

� if you�re not aware you�re doing a remote procedure call, your
program might slow down an awful lot�

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

RPC and thread pools

� What happens if two client threads (or client
programs) simultaneously invoke the same server
procedure using RPC?
� ideally, two separate threads will run on the server
� so, the RPC run-time system on the server needs to spawn

or dispatch threads into server-side stubs when messages
arrive

� is there a limit on the number of threads?
� if so, does this change semantics?
� if not, what if 1,000,000 clients simultaneously RPC into the

same server?

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 18

Web Services

� RPC accessible remote code execution
� Some specific RPC system is used to access them (e.g.,

Java RMI/Jini, SOAP, CORBA)

� Example: Google Web Services
� Web search

� search() [like the online search, but with more options]

� cache() [returns page contents last time it was visited]

� Spell() [did you mean�?]

� Google earth
� �

4

6/2/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 19

Web Services (cont.)

� Example: Amazon
� E-commerce interfaces (item lookup, cart management, etc.)
� Alexa (web crawling, structure, traffic, etc. measurements)
� S3 (network storage: $.15/GB/month + $.20/GB transferred)
� Historical pricing (pricing and sales information since 2002)
� Mechanical Turk (remote AI, $.005/HIT (Human Intelligence

Task))
� read (photo);

photoContainsHuman = callMechanicalTurk(photo);
if (photoContainsHuman == TRUE){

acceptPhoto;
}
else {

rejectPhoto;
}

How do they do this?

