
1

CSE 451: Operating Systems
Spring 2006

Module 2
Architectural Support for

Operating Systems

John Zahorjan
zahorjan@cs.washington.edu

534 Allen Center

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

� Processing power
� doubling every 18 months
� 60% improvement each year
� factor of 100 every decade

� 1980: 1 MHz Apple II+ == $2,000
� 1980 also 1 MIPS VAX-11/780 ==

$120,000
� 2006: 3.0GHz Pentium D == $800

Even coarse architectural trends
impact tremendously the design of systems

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

� Primary memory capacity
� same story, same reason (Moore�s Law)

� 1972 (core memory): 1MB = $1,000,000
� today:

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

� Aside: Where does it all go?
� Facetiously: �What Gordon giveth, Bill taketh away�
� Realistically: our expectations for what the system will do

increase relentlessly
� e.g., GUI

� �Software is like a gas � it expands to fill the available
space� � Nathan Myhrvold (1960-)

Microsoft Stock Price

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

� Disk capacity, 1975-1989
� doubled every 3+ years
� 25% improvement each year
� factor of 10 every decade
� Still exponential, but far less

rapid than processor
performance

� Disk capacity since 1990
� doubling every 12 months
� 100% improvement each year
� factor of 1000 every decade
� 10x as fast as processor

performance!
� [But, access time improves

10% / year�]

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

� Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

� Today, 1 GB (a billion bytes) costs $1 $0.50 from
Dell (except you have to buy in increments of 40 80
GB)
� => 1 TB costs $1K $500, 1 PB costs $1M $500K

� In 3 2 years, 1 GB will cost $.10
� => 1 TB for $100, 1 PB for $100K

2

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

� Optical bandwidth today
� Doubling every 9 months
� 150% improvement each year
� Factor of 10,000 every decade
� 10x as fast as disk capacity!
� 100x as fast as processor performance!!

� What are some of the implications of these trends?
� Just one example: We have always designed systems so

that they �spend� processing power in order to save �scarce�
storage and bandwidth!

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9 3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11 3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

3

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 132

Storage Latency:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
Robot

10 9

10 6

Olympia

This Building
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

© 2004 Jim Gray, Microsoft Corporation 3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

Lower-level architecture affects the OS
even more dramatically

� Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
� includes instruction set (synchronization, I/O, �)
� also hardware components like MMU or DMA controllers

� Architectural support can vastly simplify (or
complicate!) OS tasks
� e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

� Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

� Most current Intel-based PCs still lack support for 64-bit
addressing (which has been available for a decade on other
platforms: MIPS, Alpha, IBM, etc�)

� changing rapidly due to AMD�s 64-bit architecture

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

Architectural features affecting OS�s

� These features were built primarily to support OS�s:
� timer (clock) operation
� synchronization instructions (e.g., atomic test-and-set)
� memory protection
� I/O control operations
� interrupts and exceptions
� protected modes of execution (kernel vs. user)
� protected instructions
� system calls (and software interrupts)

� [2006] virtualization architectures
� Intel: http://download.intel.com/technology/computing/vptech/C97063-002.pdf

� AMD: http://enterprise.amd.com/Downloads/Pacifica_en.pdf

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

Protected instructions

� some instructions are restricted to the OS
� known as protected or privileged instructions

� e.g., only the OS can:
� directly access I/O devices (disks, network cards)

� why?
� manipulate memory state management

� page table pointers, TLB loads, etc.
� why?

� manipulate special �mode bits�
� interrupt priority level
� why?

� halt instruction
� why?

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

OS protection

� So how does the processor know if a protected
instruction should be executed?
� the architecture must support at least two modes of

operation: kernel mode and user mode
� VAX, x86 support 4 protection modes

� mode is set by status bit in a protected processor register
� user programs execute in user mode
� OS executes in kernel mode (OS == kernel)

� Protected instructions can only be executed in kernel
mode
� what happens if user mode executes a protected instruction?

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 18

Crossing protection boundaries

� So how do user programs do something privileged?
� e.g., how can you write to a disk if you can�t execute I/O

instructions?

� User programs must call an OS procedure
� OS defines a sequence of system calls
� how does the user-mode to kernel-mode transition happen?

� There must be a system call instruction, which:
� causes an exception (throws a software interrupt), which

vectors to a kernel handler
� passes a parameter indicating which system call to invoke
� saves caller�s state (regs, mode bit) so they can be restored
� OS must verify caller�s parameters (e.g., pointers)
� must be a way to return to user mode once done

4

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 19

A kernel crossing illustrated

user mode

kernel mode

Firefox: read()

trap to kernel
mode; save app

state

find read()
handler in

vector table

restore app
state, return to

user mode,
resume

trap handler

read() kernel routine

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 20

System call issues

� What would happen if kernel didn�t save state?
� Why must the kernel verify arguments?
� How can you reference kernel objects as arguments

to or results from system calls?

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 21

Memory protection

� OS must protect user programs from each other
� maliciousness, ineptitude

� OS must also protect itself from user programs
� integrity and security
� what about protecting user programs from OS?

� Simplest scheme: base and limit registers
� are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 22

More sophisticated memory protection

� coming later in the course
� paging, segmentation, virtual memory

� page tables, page table pointers
� translation lookaside buffers (TLBs)
� page fault handling

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 23

OS control flow

� after the OS has booted, all entry to the kernel
happens as the result of an event
� event immediately stops current execution
� changes mode to kernel mode, event handler is called

� kernel defines handlers for each event type
� specific types are defined by the architecture

� e.g.: timer event, I/O interrupt, system call trap
� when the processor receives an event of a given type, it

� transfers control to handler within the OS
� handler saves program state (PC, regs, etc.)
� handler functionality is invoked
� handler restores program state, returns to program

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 24

Interrupts and exceptions

� Two main types of events: interrupts and exceptions
� exceptions are caused by software executing instructions

� e.g., the x86 �int� instruction
� e.g., a page fault, or an attempted write to a read-only page
� an expected exception is a �trap�, unexpected is a �fault�

� interrupts are caused by hardware devices
� e.g., device finishes I/O
� e.g., timer fires

5

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 25

I/O control

� Issues:
� how does the kernel start an I/O?

� special I/O instructions
� memory-mapped I/O

� how does the kernel notice an I/O has finished?
� polling
� interrupts

� Interrupts are basis for asynchronous I/O
� device performs an operation asynchronously to CPU
� device sends an interrupt signal on bus when done
� in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
� who populates the vector table, and when?

� CPU switches to address indicated by vector index specified
by interrupt signal

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 26

Timers

� How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
� use a hardware timer that generates a periodic interrupt
� before it transfers to a user program, the OS loads the timer

with a time to interrupt
� �quantum� � how big should it be set?

� when timer fires, an interrupt transfers control back to OS
� at which point OS must decide which program to schedule next
� very interesting policy question: we�ll dedicate a class to it

� Should the timer be privileged?
� for reading or for writing?

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 27

Synchronization

� Interrupts cause a wrinkle:
� may occur any time, causing code to execute that interferes

with code that was interrupted
� OS must be able to synchronize concurrent processes

� Synchronization:
� guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically
� one method: turn off interrupts before the sequence, execute

it, then re-enable interrupts
� architecture must support disabling interrupts

� another method: have special complex atomic instructions
� read-modify-write
� test-and-set
� load-linked store-conditional

3/28/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 28

�Concurrent programming�

� Management of concurrency and asynchronous
events is biggest difference between �systems
programming� and �traditional application
programming�
� modern �event-oriented� application programming is a

middle ground

� Arises from the architecture
� Can be sugar-coated, but cannot be totally

abstracted away
� Huge intellectual challenge

� Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

