CSE 451: Operating Systems
Spring 2006

Module 2
Architectural Support for
Operating Systems

John Zahorjan
zahorjan@cs.washington.edu
534 Allen Center

Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple [I+ == $2,000
+ 1980 also 1 MIPS VAX-11/780 ==
$120,000

— 2006: 3.0GHz Pentium D == $800

|

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 2

« Primary memory capacity
— same story, same reason (Moore’s Law)
« 1972 (core memory): 1MB = $1,000,000
— today:

Memory

512118 Dual Channel DDR2 SDRAM at 33MHz - 2DikIis

Get More with a Gi |

168 of memory delivers more performance today AND the speed you need far tomarrow. |

@ Help Me Choose _

533Hz - 2DIMMs [Inclucied in Price]
tz- 2DIMIs [add 580 or $timonth’]

£ 268 Dusl Shannel DDR2 SDRAM at B33MHz- 4DIMMSs [add 5220 or S8imanth?]
Great Performance
May delay your Dimensicn 9160 ship date

(538 Dus| Channsl DORZ SDRALI st 5324ikz- SDINI: 332 $500 & §12manin’

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 3

» Aside: Where does it all go?
— Facetiously: “What Gordon giveth, Bill taketh away”
— Realistically: our expectations for what the system will do
increase relentlessly
* eg., GUI
— “Software is like a gas — it expands to fill the available
space” — Nathan Myhrvold (1960-)

Transistors Per Die

Microsoft Stock Price
6020000 =
5000000 : 300,
4000000
00
2000000 o
a0
2000000
1000000 e 20
o
W s s s e s orones EEr amnes
3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 4

« Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
factor of 10 every decade
Still exponential, but far less
rapid than processor
performance
« Disk capacity since 1990
— doubling every 12 months -
— 100% improvement each year !
— factor of 1000 every decade
— 10x as fast as processor o fes
performance!
— [But, access time improves
10%/year...]

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 5

* Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

+ Today, 1 GB (a billion bytes) costs $4 $0.50 from
Dell (except you have to buy in increments of 4Q 80
GB)

- =>1TB oostsS{K $500, 1 PB costs w $500K
+ In"82 years, 1 GB will cost $.10
— =>1TB for $100, 1 PB for $100K

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 6

« Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

« What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 7

Archive he New jork Times
one R o oo

WELP Post30Days x| © Welcome, lazowska

October 22,2003, Wednesday
BUSINESS/FINANCIAL DESK

TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC's
By JOHN MARKOFF (NYT) 649 words

SAN FRANCISCO, Oct. 21 -- A home-brew . assembled from off-the-shelf personal computers in just one month at cost of
sightly more than $5 million, is about to be ranked as one of the fastest machines in the world.

Word of the low-cost supercomputer, put together by faclty, technicians and students at Virginia Polytechnic Institute, s shaking up the esoteric
world of high perf computing, where th have tradiionally cost from 100 million to §250 millon and taken several
years to buid.

The Virginia Tech supercomputer, put together from 1,100 Apple Macintosh computers, has been successfully tested in recent days, according
to Jack Dongarra, a University of Tennessee computer scientist who maintains a listing of the world's 500 fastest macines.

‘The offcal resulsfor the ranking will not be reported untl next month at a supercomputer industry event. But the Apple-based supercomputer,

which is powered by 2,200 1B M. microprocessors, was able to compute at 7.41 trllon operations a second, a speed surpassed by only three
other ultra-fast computers

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 8

Archive The NewHork Times
o R i
HELP Pest30Days +] © Welcome, lazowska

May 26,2003, Monday

BUSINESS/FINANCIAL DESK

TECHNOLOGY; From PlayStation to Supercomputer for $50,000
By JOHN MARKOFF (NYT)913 worls

As perhaps the clearest evidence yet of the computing power of sophisticated but inexpensive video-game consoles, the National Center for
Supercompuing Applications at the Uriversity of linois at Urbana-Champaign has assembled a supercomputer from an army of Sony
PlayStation 2's.

The resuling system, with components purchased at retai prices, cost a itle more than 50,000, The center's researchers believe the system
may be capable of a half tilion operations a second, well vithin the definifion of supercomputer, athough it may not rank among the world's
500 fastest supercomputers

Perhaps the most stiking aspect of the project, which uses the open source Limu operating system, is that the only hardvare engineering
involved was placing 70 of the individual game machines in a rack and plugging them together with a high-speed Hewlett-Packard network
switch The center's scientsts bought 100 machines, but are holding 30 in reserve, possibly for high-resolution display application

"It took a ot of ime because you have to cut allofthese things out of the plastic packaging, seid Craig Steffen, a senior research scientist at the
center, who is one of four scientists working part fime on the project

‘The scientists are taking advantage of a standard component of the Sony video-game console that was originally intended to move and transform
piels rapidly on a television screen to produce Ifelike graphics. The chip is not the PlayStation 2's MIPS microprocessor, but rather a graphics
co-processor known as the Emotion Engine. That custorn designed silicon chip is capable of producing up to 6.5 bilon mathematical operations
asecond

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 10

Soundsiidge

Forkscwin Connecting to a stereo
Comnect1ofthe ol
) OpticalTostnk"SPOFfrom
[— undbdge toreciver
@) Black SPDIF Coax (RCAto"Coax il
o onyourecer

Wirees RouterSultch
orwied Etheret)

(3) Analog RCA bl (whitered) to VX
rteceer

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 1

Bre

e internet Exporer g

Eo ©r Uew Famie o b | &

Q- © - [4] 2] | rons @ra @[A-
sihess [£] g 1)172.30.¢

B [-

g

e sie

-

S [T meme

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 12

Storage Latency:
How Far Away is the Data?

Andromeda
109 Tape /Optical 2,000 Years
Robot
106 Disk Pluto 2 Years
100 Memory 1.5 hr
10 On Board Cache 10 min

2 On Chip Cache -
1 Registers %My Head 1 min

©2004 Jim Gray, Microsoft Corporation

Lower-level architecture affects the OS
even more dramatically

Operating system functionality is dictated, at least in
part, by the underlying hardware architecture

— includes instruction set (synchronization, I/O, ...)

— also hardware components like MMU or DMA controllers

Architectural support can vastly simplify (or
complicate!) OS tasks

— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory, in part because at that time PCs
lacked necessary hardware support

« Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

— Most current Intel-based PCs still lack support for 64-bit
addressing (which has been available for a decade on other
platforms: MIPS, Alpha, IBM, etc...)

« changing rapidly due to AMD’s 64-bit architecture

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 14

Architectural features affecting OS’s

» These features were built primarily to support OS’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection
— 1/O control operations
— interrupts and exceptions
protected modes of execution (kernel vs. user)
protected instructions
system calls (and software interrupts)

* [2006] virtualization architectures

— Intel: nttp: intel. ing/vp 97063-002.paf
— AMD: http: ise.amd.com/D: ifica_en.paf
3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 15

Protected instructions

some instructions are restricted to the OS
— known as protected or privileged instructions
e.g., only the OS can:
— directly access I/0 devices (disks, network cards)
« why?
— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
« interrupt priority level

« why?
— halt instruction
* why?
3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 16

OS protection

* So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
« VAX, x86 support 4 protection modes
— mode is set by status bit in a protected processor register
« user programs execute in user mode
+ OS executes in kernel mode (OS == kernel)
» Protected instructions can only be executed in kernel
mode
— what happens if user mode executes a protected instruction?

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 17

Crossing protection boundaries

So how do user programs do something privileged?
— e.g., how can you write to a disk if you can’t execute 1/0
instructions?
User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller's parameters (e.g., pointers)

— must be a way to return to user mode once done

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 18

A kernel crossing illustrated

Firefox: read()

trap to kernel
mode; save app
user mode state

kernel mode

restore app
state, return to
user mode,
resume

trap handler

find read()
handler in
vector table

read() kernel routine

3/28/2006

© 2006 Gribble, Lazowska, Levy, Zahorjan

System call issues

* What would happen if kernel didn’t save state?
* Why must the kernel verify arguments?

» How can you reference kernel objects as arguments
to or results from system calls?

3/28/2006

©2006 Gribble, Lazowska, Levy, Zahorjan 20

Memory protection

» OS must protect user programs from each other
— maliciousness, ineptitude

» OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

+ Simplest scheme: base and limit registers
— are these protected?

Prog A
base and limit registers
Prog B are loaded by OS before
starting program
Prog C

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan

More sophisticated memory protection

« coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan

22

OS control flow

after the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called
kernel defines handlers for each event type
— specific types are defined by the architecture
« e.g.: timer event, I/O interrupt, system call trap
— when the processor receives an event of a given type, it
« transfers control to handler within the OS

« handler saves program state (PC, regs, etc.)
« handler functionality is invoked

« handler restores program state, returns to program

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan

Interrupts and exceptions

« Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
* e.g., a page fault, or an attempted write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
* e.g., device finishes I/0
* e.g., timer fires

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 24

I/0 control

+ lIssues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped I/O
— how does the kernel notice an 1/O has finished?
« polling
* interrupts
* Interrupts are basis for asynchronous 1/0
— device performs an operation asynchronously to CPU
— device sends an interrupt signal on bus when done

— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types

+ who populates the vector table, and when?

— CPU switches to address indicated by vector index specified
by interrupt signal

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 25

Timers

* How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

+ “quantum” — how big should it be set?
— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
« very interesting policy question: we'll dedicate a class to it
» Should the timer be privileged?
— for reading or for writing?

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 2

Synchronization

* Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
* Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
« test-and-set
« load-linked store-conditional

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 27

“Concurrent programming”

* Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

 Arises from the architecture

« Can be sugar-coated, but cannot be totally
abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

3/28/2006 ©2006 Gribble, Lazowska, Levy, Zahorjan 28

