
1

CSE 451: Operating Systems
Spring 2006 

Module 14
From Physical to Logical:

File Systems

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

Physical disk structure

� Disk components
� platters
� surfaces
� tracks
� sectors
� cylinders
� arm
� heads

platter

surface

track
sector

cylinder

arm

head

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

Disk performance

� Performance depends on a number of steps
� seek: moving the disk arm to the correct cylinder

� depends on how fast disk arm can move
� seek times aren�t diminishing very quickly (why?)

� rotation (latency): waiting for the sector to rotate under head
� depends on rotation rate of disk

� rates are increasing, but slowly (why?)

� transfer: transferring data from surface into disk controller, 
and from there sending it back to host

� depends on density of bytes on disk
� increasing, and very quickly

� When the OS uses the disk, it tries to minimize the 
cost of all of these steps
� particularly seek and rotation

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

From Physical To Logical: Low Level

Disk
Boot block:
� boot loader (code)
� partition table

Partition 0:
� Independently managed 

group of blocks

Partition 1

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

From Physical To Logical: File Systems

OS Partition

/

etcroot

Need to keep track of 3 things:

1. Free blocks
2. Inodes

� File blocks
3. Directory Entries

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

A Strawman Approach

OS Partition

/

etcroot
..

foo
root

foo

Superblock
� Where are the free blocks?
� Where is /?

Inode
� File meta-data
� Where are the file blocks?

Directory Entry
� File name -> inode
� next directory entry



2

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

Formatting: Preparing the Empty File System

OS Partition

/
.
..

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

Evaluation

Partition

..

foo
root

� Simple
� No preset limits on:

� File size
� Number of files
� Disk size

Positives:

� Incredibly slow:
� Many block transfers to read a directory

�Many seek / latency delays
� Direct access to file bytes requires walking 

linked list of data blocks
� Internal fragmentation

� 1KB allocated for every inode
� 1KB allocated for every directory entry

Negatives:

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

Solutions

� Performance
� Pack logical items into physical blocks

� Inodes
� Directory entries

� 1 seek / latency retries many items

� Keep items small
� Fewer files than blocks ⇒ fewer bits in an inode name than 

a block name

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

The original Unix file system

� Dennis Ritchie and Ken Thompson, Bell Labs, 1969
� �UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
timesharing operating system� � Multics

� Designed for a �workgroup� sharing a single system
� Did its job exceedingly well

� Although it has been stretched in many directions and made 
ugly in the process

� A wonderful study in engineering tradeoffs

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

All disks are divided into five parts �

� Boot block
� can boot the system by loading from this block

� Superblock
� specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks

� i-node area
� contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

� File contents area
� fixed-size blocks; head of freelist is in the superblock

� Swap area
� holds processes that have been swapped out of memory

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

Disk Layout

Superblock

Inode Blocks

Data Blocks

Inode K is in block
K / (BLOCK_SIZE / sizeof(inode))

At offset
K % (BLOCK_SIZE/sizeof(inode))

Directory entries are packed into
blocks in a manner similar to inodes

Direct Access to inodes:



3

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 13

The tree (directory, hierarchical) file system

� A directory is a flat file of fixed-size entries
� Each entry consists of an i-node number and a file 

name 

a_directory144
oh_my_god93
another_file4
my_file216
..18
.152

File namei-node number

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

The �block list� portion of the i-node (Unix Version 7)
� Must be able to represent very small and very large files�
� with minimal chaining�
� and leaving inodes small

� Each inode contains 13 block pointers
� first 10 are �direct pointers� (pointers to blocks of file data)
� then, single, double, and triple indirect pointers

0
1

10
11
12

�

�

�

�

�

� �

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

So �

� Data pointers occupy only 13 x 4B in the inode
� Can get to 10 x 512B = a 5120B file directly

� (10 direct pointers, blocks in the file contents area are 512B)

� Can get to 128 x 512B = an additional 65KB with a single indirect 
reference

� (the 11th pointer in the i-node gets you to a 512B block in the file contents area that 
contains 128 4B pointers to blocks holding file data)

� Can get to 128 x 128 x 512B = an additional 8MB with a double indirect 
reference

� Can get to 128 x 128 x 128 x 512B = an additional 1GB with a triple 
indirect reference

� Maximum file size is 1GB + a smidge

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

� A later version of Bell Labs Unix utilized 12 direct 
pointers rather than 10
� Why?

� Berkeley Unix went to 1KB block sizes
� What�s the effect on the maximum file size?

� 256x256x256x1K = 17 GB + a smidge
� What�s the price?

� Suppose you went to 4KB blocks?
� 1Kx1Kx1Kx4K = 4TB + a smidge

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

File system consistency

� Both i-nodes and file blocks are cached in memory
� The �sync� command forces memory-resident disk 

information to be written to disk
� system does a sync every few seconds

� A crash or power failure between sync�s can leave an 
inconsistent disk

� You could reduce the frequency of problems by 
reducing caching, but performance would suffer big-
time

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 18

i-check: consistency of the flat file system

� Is each block on exactly one list?
� create a bit vector with as many entries as there are blocks
� follow the free list and each i-node block list
� when a block is encountered, examine its bit

� If the bit was 0, set it to 1
� if the bit was already 1

� if the block is both in a file and on the free list, remove it from the 
free list and cross your fingers

� if the block is in two files, call support!

� if there are any 0�s left at the end, put those blocks on the 
free list



4

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 19

d-check: consistency of the directory file system

� Do the directories form a tree?
� Does the link count of each file equal the number of 

directories links to it?
� I will spare you the details

� uses a zero-initialized vector of counters, one per i-node
� walk the tree, then visit every i-node 

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 20

File System Performance 1: Disk scheduling

� Seeks are very expensive, so the OS attempts to 
schedule disk requests that are queued waiting for 
the disk
� FCFS (do nothing)

� reasonable when load is low
� long waiting time for long request queues

� SSTF (shortest seek time first)
� minimize arm movement (seek time), maximize request rate
� unfairly favors middle blocks

� SCAN (elevator algorithm)
� service requests in one direction until done, then reverse
� skews wait times non-uniformly (why?)

� C-SCAN
� like scan, but only go in one direction (typewriter)
� uniform wait times

5/19/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 21

File System Performance 2: Layout

� Disk scheduling attempts to minimize the impact of 
blocks needed at the moment located widely over the 
disk
� How effective do you imagine it is / can be?

� An alternative (complementary) approach is to 
allocate blocks likely to be needed together near 
each other?
� Which blocks might be needed together?

� A related approach is to observe block usage 
patterns and move them near each other
� The �pipe organ� layout is the simplest example


