* First slide

n Rest of project 2 due next Friday
» Turnin code + writeup

n Today:
» Project 2 parts 4-6 (quick)
» Midterm sample questions & review

Project 2 — web server

n web/sioux.c — singlethreaded web server
» Read in command line args, run the web server loop
n web/sioux_run.c — the webserver loop
» Open a socket to listen for connections (I i st en)
» Wait for a connection (accept )
» Handle it
» Parse the HTTP request
» Find and read the requested file (www root is ./docs)

» Send the file back
» Close the connection

n web/web_queue.c — an empty file for your use

* What you need to do

n Make the web server multithreaded
» Create a thread pool
» A bunch of threads waiting for work
» Number of threads = command-line arg
» Wait for a connection
» Find an available thread to handle connection
» Current request waits if all threads busy

» Once a thread grabs onto connection, it uses
the same processing code as before.

Hints

n Each connection is identified by a socket returned
by accept
» Which is just an int
» Simple management of connections among threads

n Threads should sleep while waiting for a new
connection
» Condition variables are perfect for this

» Don't forget to protect any global variables
» Use part 2 mutexes, CVs

n Develop + test with pthreads initially

n Mostly modify sioux_run.c and/or your own files
n Stick to the sthread.h interface!

* Part 6 — Report

n Design discussion & functionality
» Make it short
n Results
» Run a few experiments with the new webserver
» Use given web benchmark: /cse451/projects/webclient
» Present results in a graphical easy-to-understand form.
» Explain
» Are the results what you expected?
« Try to justify any discrepancies you see
» Answer a few of our questions

* Project 2 questions?




* Midterm — top 3 topics

n Scheduling
n Synchronization
n Virtual Memory

Scheduling review

n FIFO:
+ simple
- short jobs can get stuck behind long ones; poor I/O device
utilization
n RR:
+ better for short jobs
- hard to select right time slice
- poor turnaround time when jobs are the same length
n SJF:
+ optimal (ave. waiting time, ave. time-to-completion)
- hard to predict the future
- unfair
n Multi-level feedback:
+ approximate SJF
- unfair to long running jobs

* A simple scheduling problem

Thread Arrival Time Burst Time
A 0 10

B 1 5

C 3 2

n FIFO Turnaround time: n» FIFO Waiting Time:

i A simple scheduling problem

Thread Arrival Time Burst Time
A 0 10
B 1 5
C 3 2
n FIFO Turnaround Time: n» FIFO Waiting Time:
» A: (10-0) = 10 " A0
. B: (15-1) = 14 o B:(10-1) =9
n C(17-3) =14 n C(15-3) =12
o (10+14+14)/3 = 12.66 o (10+9+12)/3 = 10.33

* A simple scheduling problem

n What about SJF with 1 unit delay?

Thread

Arrival Time

Burst Time

A

0

10

B

1

5

C

3

2

n Ave Turnaround Time: n Ave Waiting Time:
" B:5 n B: O
" C:7-3=4 " Ci5-2=3
o Ar145+2+10 = 18 n Al 1+5+2 =8
v (17+4+5)/3 = 8.67 « (0+3+8)/3 = 3.67

Wl

* Priority Inversion

n Have three processes
» P1:Highest priority; P2:Medium; P3:Lowest
» Have this code:
P( mut ex) ;
critical section;
V( mut ex) ;
» P3 acquires mutex; preempted
n P1 tries to acquire mutex; blocks
n P2 enters the system at medium priority; runs
n P3 never gets to run; P1 never gets to run!!

n This happened on Mars Pathfinder in 1997!
n Solutions?




* Deadlock-related questions

n Can there be a deadlock with only one process?

n Given two threads, what sequence of calls to
transfer(...) causes the following to deadlock?

/* transfer x dollars froma to b */
void transfer(account *a, account *b, int x)
P(a->sema) ;
P(b->sema) ;
a- >bal ance += x;
b- >bal ance -= x;
V(b->senmm);
V(a->senma);

* Some synchronization issues

n Monitors
» How should we use them?

» Why is this weird inside a monitor?
P(mutex);
account+=balance;
V(mutex);

n General notes
» Always init your semaphores!
» Say which variables are in shared state

* Another synchronization problem

n File sharing problem
» Processes can share a file as long as >pid < n
» Write a monitor to coordinate the processes

File sharing — (almost) correct solution

type file = nonitor
var space_avail able: condition

total : integer
procedure file_open(id)
begi n

if (total +id >=n)
space_avai l able. wait();

total = total + id;
end
procedure file_close(id)
begi n
total = total - id,
space_avai | abl e. si gnal ();
end

Find the bugs!

File sharing — correct solution

type file = nonitor
var space_avail abl e: conditional _wait

total: integer
procedure file_open(id)
begin

while (total + id >=n)
space_avai |l abl e. wai t (id);

total = total + id,

if (total <n - 1)
space_avai |l abl e. signal ();

end
procedure file_close(id)
begin

total = total - id;

space_avai |l abl e. signal ();
end

* Quick VM exercise

n Consider a virtual address space of 8 pages
of 512 bytes each, mapped onto a physical
memory of 32 frames

» Virtual address size (in bits):

» Physical address size (in bits):




* Another VM sample question

n Given:
n 32-bit architecture
» Architecture only supports 30-bit physical addresses
» 4K pages
» Master page table has 4K entries
» Maps 4K 2" level page tables

» Draw a picture of virtual address structure and
how it gets translated...

0
Describe the result of accessing the ‘ o
following virtual addresses: (pmm;ymn §
o o 4 oo
[ Gxico -
0x0 I .
0x00803024 a| oxeo01 1024 o0
a4 oo
0x00c00136 L \wﬁm
E Phys Addr 0xB000)
22 0x0 0
(2% == 0x400000, { =T
212 = 0x1000) g mosini
3 oo
4 oo
Answers: fault, 0x00020024, fault

T
. . 1
List the physical frames that e e
this address space has direct (Pys Addr 0x1000) 3] 0x20001
Is this add —— =
access to. Is this address [ oxicor "
space properly isolated from 2[ 05001 .
. 3| Oxs00 1024 Ox0
accessing any other frames? o0
Page Table
Answers: 01000, Ox5000, 0xB00O, (x326000, F A x3000)
0x41000, 0x200000, x67000, 0x4<000. o0 0
Ignoring kernel/user bits and write protection, 1| ox326001
the page tables have been made accessable o 2 oot
the address space (virtual addresses o0
0x00400000-0x0041fiff), 50 a process running
in this address space could map-in any physical q oo
frame it wanted to.

@ 2-Level Page Table

Virtual Address Format

10 Bits 10 Bits 12 Bits
. [ PDENum PTENum |  Page Offset |
@ 4KB Page Size
. 32 bit addresses FI_:) LRIl : y
20 Bits 11Bits 1Bt
. Physical Frame N Prot, Mod, Ref
@ PDEPTE of 32 bits | S el T R e e Qm

What is the data stored at
virtual address 0x00402004¢

o
1
Page Direclory 2| ox67001
(Phys Addr 0x1000) 3| 0x20001
[ 4 00
1 oxiool .
2| ox5001
3| oxB001 1024 0x0
4 o0
B Page Table
= [Phys Addr 0xB000)
1024 G0 0
1 [ 0x326001
2 oxaio01
al oo
4 oo




