CSE 451 Section
! Autumn 2004

Alex Moshchuk
anm@cs
Office hours: Tue 1-2, Thu 4:30-5:30
Allen 218 (or lab)

i Reminders

n Sign up for mailing list
n Read the web site
» Work through lab information
n Start reading the book
n Do the first homework — due tomorrow!
n Check spinlock/coredump access
n Read & start project 1

* 451 Projects

n 4 projects
n First one — individual, others — groups of 3
n Need basic C and UNIX skills
» Check links if you need help with this
n Challenging
» Don't leave until last minute
n Learn a lot of cool stuff

i First Project

n Introduces C and Unix skills you'll need
n Teaches how to build and run Linux in
VMWare
n TwO main parts:
» Write a simple shell in C
» Add a simple system call to Linux kernel

n Due: Friday, Jan 14, before lecture (2:30)
« Electronic turnin: code + writeup

* The shell

n Print out prompt CSE451Shel | % / bi nl date

Fri Jan 16 00: 05:39 PST 2004

n Accept input CSE451Shel | % pud
! t
n Parse input crs(éismen%&
. CSE451Shel | % pwd
n If built-in command !

CSE451Shel | % exi t

« do it directly

n Else create new process

» Launch specified program
there

» Wait for it to finish
n Repeat

* System Calls

n What's a system call?
n Examples?
n In your shell:
» Use fork to create a child process
» Use execvp to execute a specified program
» Use wait to wait until child process terminates

* Project 1: Adding a System Call

n Add execcounts system call to Linux:
~ Purpose: collect statistics
» Count number of times you call fork, vfork,
clone, and exec system calls.
n Steps:
» Modify kernel to keep track of this information
» We give you the kernel code
» Add execcounts to return the counts to the
user
» Use execcounts in your shell to get this data
from kernel and print it out.

* Example of execcounts

CSE451shel | % execcounts cl ear
CSE451shel | % cd /
CSE451Shel | % pwd
!
CSE451Shel | % dat e
Wed Sep 29 16:52:41 PDT 2004
CSE451Shel | % ti me
Usage: time [-apvV] [-f format] [-o file] [--append] [--
ver bose]
[--portability] [--format=format] [--output=file] [--
version]
[--help] command [arg...]

CSE451Shel | % execcount s
Statistics:

For k:

Cl one:

VFor k:

Exec:

CSE451Shel | % exi t

27%
0%
0%
2%

® oo w

* Programming in kernel mode

n Your shell will operate in user mode
n Your system call code will be in the Linux
kernel, which operates in kernel mode

» Be careful - different programming rules,
conventions, etc.

* Programming in kernel mode

» Can't use application libraries (e.g. libc)
» E.g. can't use printf

n Use only functions defined by the kernel
» E.g. use printk instead

n Include files are different in the kernel

» Don't forget you're in kernel space

» E.g. unsafe to access a pointer from user
space directly, use fn’s that perform checks

n Best way to learn — look at existing code

* Computing Resources

n Develop your code on dedicated 451 Linux
hosts:
n Spinlock, coredump

n Test your code on VMWare PCs in 006

n Do not use attu

* VMWare

n Software simulation of x86 architecture

» Run an OS in a sandbox
» Easily reset to known good state

VMWare config
Don‘t change!

n All disks are nonpersistent

n Powering off loses your changes! Use “shutdown —r
now” instead

n Network adapter is host-only

* UNIX & C help

n Unix & C tutorial links on 451 projects page
n What if my shell crashes?
» Use gdb to debug
» gdb tutorials linked on web site
n What do I use to compile my shell?
n gcc. For example, gcc —o shell shell.c -vall -g
n What do I use to type up my code?
» I recommend Emacs (look for Emacs tutorials)
» VS.NET works too

* Linux && VMWare

n There is only one user: root

n The password is rootpassword

n You will need to:
» Build a kernel image on spinlock/coredump
» Transfer it to Linux running inside VMWare
» Boot your new Linux kernel in VMWare

n Use ftp to get your files into VMWare

» FTP to 192.168.93.2 from the host running
VMWare.

« E.g. using IE, go to
ftp://root:rootpassword@192.168.93.2

14

* UNIX & C help - 2

n How do I find stuff in the kernel source?
» Use grep —r search_string *
» Use LXR (Linux Cross Reference): Attp.//Ixr.linux.no/
» Which library functions does C have to simplify
my shell code?
» man strncmp, gets, fgets, strtok, strchr, perror

* Refreshing C skills; code quality

n What's wrong with this:
char *buffer;
buffer = malloc(100);
strcpy(buffer, paranm;

» How do we fix this?

* C Debugging hint
#define MYDEBUG // comment out to disable debugging
#i f def MYDEBUG
#define DEBUQ x) x
#el se
#defi ne DEBUQ x)
#endi f
int min() {

printf(“normal output”);
DEBUGQ(pri ntf (“debug output“));

}

* More debugging

n Just for printing:
#i f def MYDEBUG
ifdef _ KERNEL__
/* This one if debugging is on, and kernel space */
define PDEBUG(fnt, args...) printk(“myprg: " fnt, ## args)
else
/* This one for user space */
define PDEBUG fnt, args...) fprintf(stderr, fnt, ## args)
endif
#el se
define PDEBUGfnt, args...) /* not debugging: nothing */
#endi f

n works for both for kernel and userspace

n To use:
PDEBUG(“ Testing two nunbers: %l and %l\n”, num nun®);

