
1

CSE 451: Operating Systems
Winter 2005

Lecture 5
Threads

Steve Gribble

1/9/05 © 2005 Steve Gribble 2

What’s in a process?

• A process consists of (at least):
– an address space
– the code for the running program
– the data for the running program
– an execution stack and stack pointer (SP)

• traces state of procedure calls made
– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their

values
– a set of OS resources

• open files, network connections, sound channels, …

• That’s a lot of concepts bundled together!

1/9/05 © 2005 Steve Gribble 3

Concurrency

• Imagine a web server, which might like to handle multiple
requests concurrently
– While waiting for the credit card server to approve a purchase for

one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client
from cached information

• Imagine a web client (browser), which might like to initiate
multiple requests concurrently
– The CSE home page has 46 “src= …” html commands, each of

which is going to involve a lot of sitting around! Wouldn’t it be nice
to be able to launch these requests concurrently?

• Imagine a parallel program running on a multiprocessor, which
might like to concurrently employ multiple processors
– For example, multiplying a large matrix – split the output matrix

into k regions and compute the entries in each region concurrently
using k processors

1/9/05 © 2005 Steve Gribble 4

What’s needed?

• In each of these examples of concurrency (web
server, web client, parallel program):
– Everybody wants to run the same code
– Everybody wants to access the same data
– Everybody has the same privileges
– Everybody uses the same resources (open files, network

connections, etc.)
• But you’d like to have multiple hardware execution

states:
– an execution stack and stack pointer (SP)

• traces state of procedure calls made
– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their

values

1/9/05 © 2005 Steve Gribble 5

How could we achieve this?

• Given the process abstraction as we know it:
– fork several processes
– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

• This is like making a pig fly – it’s really inefficient
– space: PCB, page tables, etc.
– time: creating OS structures, fork and copy addr space, etc.

• Some equally bad alternatives for some of the cases:
– Entirely separate web servers
– Asynchronous programming in the web client (browser)

1/9/05 © 2005 Steve Gribble 6

Can we do better?

• Key idea:
– separate the concept of a process (address space, etc.)
– from that of a minimal “thread of control” (execution state:

PC, etc.)
• This execution state is usually called a thread, or

sometimes, a lightweight process

2

1/9/05 © 2005 Steve Gribble 7

Threads and processes

• Most modern OS’s (Mach, Chorus, NT, modern
Unix) therefore support two entities:
– the process, which defines the address space and general

process attributes (such as open files, etc.)
– the thread, which defines a sequential execution stream

within a process
• A thread is bound to a single process

– processes, however, can have multiple threads executing
within them

– sharing data between threads is cheap: all see same
address space

• Threads become the unit of scheduling
– processes are just containers in which threads execute

1/9/05 © 2005 Steve Gribble 8

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

1/9/05 © 2005 Steve Gribble 9

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

1/9/05 © 2005 Steve Gribble 10

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

1/9/05 © 2005 Steve Gribble 11

Process/thread separation

• Concurrency (multithreading) is useful for:
– handling concurrent events (e.g., web servers and clients)
– building parallel programs (e.g., matrix multiply, ray tracing)
– improving program structure (the Java argument)

• Multithreading is useful even on a uniprocessor
– even though only one thread can run at a time

• Supporting multithreading – that is, separating the
concept of a process (address space, files, etc.) from
that of a minimal thread of control (execution state),
is a big win
– creating concurrency does not require creating new

processes
– “faster better cheaper”

1/9/05 © 2005 Steve Gribble 12

“Where do threads come from, Mommy?”

• Natural answer: the kernel is responsible for
creating/managing threads
– for example, the kernel call to create a new thread would

• allocate an execution stack within the process address space
• create and initialize a Thread Control Block

– stack pointer, program counter, register values
• stick it on the ready queue

– we call these kernel threads

3

1/9/05 © 2005 Steve Gribble 13

• Threads can also be managed at the user level (that
is, entirely from within the process)
– a library linked into the program manages the threads

• because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which
only the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

• Thread package multiplexes user-level threads on top of kernel
thread(s), which it treats as “virtual processors”

– we call these user-level threads

1/9/05 © 2005 Steve Gribble 14

Kernel threads

• OS now manages threads and processes
– all thread operations are implemented in the kernel
– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g., on I/O), the OS knows
about it, and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
(e.g., orders of magnitude more expensive than a
procedure call)
– thread operations are all system calls

• context switch
• argument checks

– must maintain kernel state for each thread

1/9/05 © 2005 Steve Gribble 15

User-level threads

• To make threads cheap and fast, they need to be
implemented at the user level
– managed entirely by user-level library, e.g. libpthreads.a

• User-level threads are small and fast
– each thread is represented simply by a PC, registers, a

stack, and a small thread control block (TCB)
– creating a thread, switching between threads, and

synchronizing threads are done via procedure calls
• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than
kernel threads as a result

1/9/05 © 2005 Steve Gribble 16

Performance example

• On a 700MHz Pentium running Linux 2.2.16:

– Processes
• fork/exit: 251 µs

– Kernel threads
• pthread_create()/pthread_join(): 94 µs

– User-level threads
• pthread_create()/pthread_join: 4.5 µs

1/9/05 © 2005 Steve Gribble 17

Performance example

• On a 700MHz Pentium running Linux 2.2.16:
• On a DEC SRC Firefly running Ultrix, 1989

– Processes
• fork/exit: 251 µs / 11,300 µs

– Kernel threads
• pthread_create()/pthread_join(): 94 µs / 948 µs

– User-level threads
• pthread_create()/pthread_join: 4.5 µs / 34 µs

1/9/05 © 2005 Steve Gribble 18

User-level thread implementation

• The kernel thread (the kernel-controlled executable
entity associated with the address space) executes
the code in the address space

• This code includes the thread support library and its
associated thread scheduler

• The thread scheduler determines when a thread runs
– it uses queues to keep track of what threads are doing: run,

ready, wait
• just like the OS and processes
• but, implemented at user-level as a library

4

1/9/05 © 2005 Steve Gribble 19

Thread interface

• This is taken from the POSIX pthreads API:

– t = pthread_create(attributes, start_procedure)
• creates a new thread of control
• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts the thread waiting on the condition variable

– pthread_exit()
• terminates the calling thread

– pthread_wait(t)
• waits for the named thread to terminate

1/9/05 © 2005 Steve Gribble 20

• Strategy 1: force everyone to cooperate
– a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to

another ready thread
– what happens if a thread never calls yield()?

• Strategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the

OS periodically
• usually delivered as a UNIX signal (man signal)
• signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
– at each timer interrupt, scheduler gains control and context

switches as appropriate

How to keep a thread from hogging the CPU?

1/9/05 © 2005 Steve Gribble 21

Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push machine state onto thread stack
– restore context of the next thread

• pop machine state from next thread’s stack
– return as the new thread

• execution resumes at PC of next thread

• This is all done by assembly language
– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

1/9/05 © 2005 Steve Gribble 22

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration
of the (synchronous) I/O operation!

• Could have one kernel thread “powering” each user-
level thread
– “common case” operations (e.g., synchronization) would be

quick
• Could have a limited-size “pool” of kernel threads

“powering” all the user-level threads in the address
space
– the kernel will be scheduling its threads obliviously to what’s

going on at user-level

1/9/05 © 2005 Steve Gribble 23

What if the kernel preempts a thread
holding a lock?

• Other threads will be unable to enter the critical
section and will block (stall)
– tradeoff, as with everything else

• Solving this requires coordination between the kernel
and the user-level thread manager
– “scheduler activations”

• a research paper from UW with huge effect on industry
• each process can request one or more kernel threads

– process is given responsibility for mapping user-level threads
onto kernel threads

– kernel promises to notify user-level before it suspends or destroys
a kernel thread

• ACM TOCS 10,1

1/9/05 © 2005 Steve Gribble 24

Summary

• You really want multiple threads per address space
• Kernel threads are much more efficient than

processes, but they’re still not cheap
– all operations require a kernel call and parameter verification

• User-level threads are:
– fast as blazes
– great for common-case operations

• creation, synchronization, destruction
– can suffer in uncommon cases due to kernel obliviousness

• I/O
• preemption of a lock-holder

• Scheduler activations are the answer
– pretty subtle though

