CSE 451: Operating Systems Winter 2005

Secondary Storage

Steve Gribble

Secondary storage

- · Secondary storage typically:
 - is anything that is outside of "primary memory"
 - does not permit direct execution of instructions or data retrieval via machine load/store instructions
- · Characteristics:
 - it's large: 30-250GBit's cheap: \$1/GB
 - it's persistent: data survives power loss
 - it's slow: milliseconds to access
 - why is this slow??

Disk trends

- Disk capacity, 1975-1989
 - doubled every 3+ years
 - 25% improvement each year
 - factor of 10 every decade
 - exponential, but far less rapid than processor performance
- Disk capacity since 1990
 - doubling every 12 months
 - 100% improvement each year
 - factor of 1000 every decade
 - 10x as fast as processor performance!

Disks and the OS

- · Disks are messy, messy devices
 - errors, bad blocks, missed seeks, etc.
- Job of OS is to hide this mess from higher-level software
 - low-level device drivers (initiate a disk read, etc.)
 - higher-level abstractions (files, databases, etc.)
- OS may provide different levels of disk access to different clients
 - physical disk block (surface, cylinder, sector)
 - disk logical block (disk block #)
 - file logical (filename, block or record or byte #)

2/14/05 © 2005 Steve Gribble 7

Physical disk structure Disk components - platters - surfaces sector tracks sectors surface - cylinders arm heads cylinder platter head © 2005 Steve Gribble 2/14/05 8

Disk performance

- · Performance depends on a number of steps
 - seek: moving the disk arm to the correct cylinder
 - · depends on how fast disk arm can move
 - seek times aren't diminishing very quickly (why?)
 - rotation (latency): waiting for the sector to rotate under head
 - · depends on rotation rate of disk
 - rates are increasing, but slowly (why?)
 - transfer: transferring data from surface into disk controller, and from there sending it back to host
 - · depends on density of bytes on disk
 - increasing, and very quickly
- When the OS uses the disk, it tries to minimize the cost of all of these steps
 - particularly seeks and rotation

2/14/05 © 2005 Steve Gribble 9

Disk scheduling

- Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 - · reasonable when load is low
 - · long waiting time for long request queues
 - SSTF (shortest seek time first)
 - · minimize arm movement (seek time), maximize request rate
 - · unfairly favors middle blocks
 - SCAN (elevator algorithm)
 - · service requests in one direction until done, then reverse
 - skews wait times non-uniformly (why?)
 - C-SCAN
 - like scan, but only go in one direction (typewriter)
 - · uniform wait times

Interacting with disks

- In the old days...
 - OS would have to specify cylinder #, sector #, surface #, transfer size
 - · i.e., OS needs to know all of the disk parameters
- Modern disks are even more complicated
 - not all sectors are the same size, sectors are remapped, ...
 - disk provides a higher-level interface, e.g., SCSI
 - exports data as a logical array of blocks [0 ... N]
 - maps logical blocks to cylinder/surface/sector
 - OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 - · on-board cache
 - · as a result, physical parameters are hidden from OS
 - both good and bad

2/14/05 © 2005 Steve Gribble 11

Example disk characteristics

IBM Ultrastar 36XP drive

form factor: 3.5"capacity: 36.4 GB

- rotation rate: 7,200 RPM (120 RPS)

platters: 10surfaces: 20

- sector size: 512-732 bytes

cylinders: 11,494

cache: 4MB

- transfer rate: 17.9 MB/s (inner) - 28.9 MB/s (outer)

full seek: 14.5 mshead switch: 0.3 ms

