
 1

Homework #3 Solutions

1. Suppose that the following processes arrive for execution at the times indicated. Each
process will run with a single burst of CPU activity (i.e., no I/O) which lasts for the listed
amount of time.

 process arrival time CPU burst time priority
 ------- ------------ -------------- --------
 p1 0ms 18ms 2
 p2 1ms 12ms 1
 p3 20ms 16ms 3
 p4 31ms 14ms 4

a. What is the job throughput, average waiting time and average turnaround time for
these processes with non-preemptive, FCFS scheduling?

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1 X X X X X X X X X X X X X X X X X X

P2 R R R R R R R R R R R R R R R R R X X X X X X X X X X X X

P3 R R R R R R R R R R

P4

 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1

P2

P3 X X X X X X X X X X X X X X X X

P4 R R R R R R R R R R R R R R R X X X X X X X X X X X X X X

Job throughput: 4 jobs in 60 time units, or (4/60) jobs per time unit

Avg waiting time: if wait time == time on ready queue (textbook definition),
 then this is (0 + 17 + 10 + 15)/4 = 42/4 time units

 if wait time == time on wait queue (my definition from slides),
 then this is 0 time units.

Avg turnaround time: turnaround time = time of completion of process – time of

submission of process

avg turnaround = ((18-0) + (30-1) + (46-20) + (60-31))/4

 = 102/4 time units

 2

b.With preemptive RR (quantum = 10ms) scheduling? (Different strategies might be
used to add a newly submitted process to the ready queue. Explain what strategy you're
using.)

Assume new processes go on the TAIL of the ready queue:

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1 X X X X X X X X X X R R R R R R R R R R X X X X X X X X

P2 R R R R R R R R R X X X X X X X X X X R R R R R R R R X X

P3 R R R R R R R R R R

P4

 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1

P2

P3 X X X X X X X X X X R R R R R R R R R R X X X X X X

P4 R R R R R R R R R X X X X X X X X X X R R R R R R X X X X

Job throughput: 4 jobs in 60 time units, or (4/60) jobs per time unit

Avg waiting time: if wait time = time on ready queue (textbook definition),
 then this is (10 + 17 + 20 + 15)/4 = 62/4 time units

 if wait time == time on wait queue (my definition from slides),
 then this is 0 time units.

Avg turnaround time: turnaround time = time of completion of process – time of

submission of process (page 128 of textbook)

avg turnaround = ((28-0) + (30-1) + (56-20) + (60-31))/4

 = 122/4 time units

 3

Assume new processes go on the HEAD of the ready queue:

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1 X X X X X X X X X X R

P2 R R R R R R R R R X X X X X X X X X X R R R R R R R R R R

P3 X X X X X X X X X X

P4

 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1 X X X X X X X X

P2 R R R R R R R R R R R R R R R R R R X X

P3 R X X X X X X

P4 R R R R R R R X X X X X X X X X X R R R R R R R R X X X X

Job throughput: 4 jobs in 60 time units, or (4/60) jobs per time unit

Avg waiting time: if wait time = time on ready queue (textbook definition),
 then this is (20 + 37 + 18 + 15)/4 = 90/4 time units

 if wait time == time on wait queue (my definition),
 then this is 0 time units.

Avg turnaround time: turnaround time = time of completion of process – time of

submission of process (page 128 of textbook)

avg turnaround = ((38-0) + (50-1) + (56-20) + (60-31))/4

 = 152/4 time units

 4

c. With preemptive priority scheduling (given the above priorities)?

Assuming higher numbers mean higher priority:

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1 X X X X X X X X X X X X X X X X X X

P2 R R R R R R R R R R R R R R R R R X X R R R R R R R R R R

P3 X X X X X X X X X X

P4

 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P1

P2 R X X X X X X X X X X

P3 X R R R R R R R R R R R R R R X X X X X

P4 X X X X X X X X X X X X X X

Job throughput: 4 jobs in 60 time units, or (4/60) jobs per time unit

Avg waiting time: if wait time = time on ready queue (textbook definition),
 then this is (0 + 47 + 14 + 0)/4 = 61/4 time units

 if wait time == time on wait queue (my definition),
 then this is 0 time units.

Avg turnaround time: turnaround time = time of completion of process – time of

submission of process (page 128 of textbook)

avg turnaround = ((18-0) + (60-1) + (50-20) + (45-31))/4

 = 121/4 time units

 5

2. Consider the Sleeping-Barber Problem (p233, question 6.11 in the textbook,) with the
modification that there are k barbers and k barber chairs in the barber room, intead of just
one. Write a program to coordinate the barbers and the customers using Java, C, or
pseudo-code. You can use either semaphores or monitors.

Here’s a solution that uses semaphores:

// shared data
Semaphore waiting_room_mutex = 1;
Semaphore barber_room_mutex = 1;

Semaphore barber_chair_free = k;
Semaphore sleepy_barbers = 0;

Semaphore barber_chairs[k] = {0, 0, 0, …};
int barber_chair_states[k] = {0, 0, 0, …};

int num_waiting_chairs_free = N;

boolean customer_entry() {

 // try to make it into waiting room
 wait(waiting_room_mutex);
 if (num_waiting_chairs_free == 0) {
 signal(waiting_room_mutex);
 return false;
 }
 num_waiting_chairs_free--; // grabbed a chair
 signal(waiting_room_mutex);

 // now, wait until there is a barber chair free
 wait(barber_chair_free);

 // a barber chair is free, so release waiting room chair
 wait(waiting_room_mutex);
 wait(barber_room_mutex);
 num_waiting_chairs_free++;
 signal(waiting_room_mutex);

 // now grab a barber chair
 int mychair;
 for (int I=0; I<k; I++) {
 if (barber_chair_states[I] == 0) { // 0 = empty chair
 mychair = I;
 break;

 6

 }
 }
 barber_chair_states[mychair] = 1; // 1 = haircut needed
 signal(barber_room_mutex);

 // now wake up barber, and sleep until haircut done
 signal(sleepy_barbers);
 wait(barber_chairs[mychair]);

 // great! haircut is done, let’s leave. barber
 // has taken care of the barber_chair_states array.
 signal(barber_chair_free);
 return true;
}

void barber_enters() {
 while(1) {
 // wait for a customer
 wait(sleepy_barbers);

 // find the customer
 wait(barber_room_mutex);
 int mychair;
 for (int I=0; I<k; I++) {
 if (barber_chair_states[I] == 1) {
 mychair = I;
 break;
 }
 }
 barber_chair_states[mychair] = 2; // 2 = cutting hair
 signal(barber_room_mutex);

 // CUT HAIR HERE
 cut_hair(mychair);

 // now wake up customer
 wait(barber_room_mutex);
 barber_chair_states[mychair] = 0; // 0 = empty chair
 signal(barber_chair[mychair]);
 signal(barber_room_mutex);

 // all done, we’ll loop and sleep again
 }
}

 7

3. “Spot the bugs”

 a & b: Here are all the bugs I deliberately planted…

i. The return values of pthread_* functions are not checked. These functions
can return error codes; since they aren’t checked, all sorts of bad things could
go wrong. For example, if the pthread_mutex_init() functions fail, the mutex
may not function correctly. The fix is simply to check the return values, and
exit the program if the return values indicate an error. The bug is potentially
non-deterministic, especially if the mutexes aren’t working correctly.

ii. Malloc return value not checked. This means the malloc might fail, and

depending on what the compiler sets an uninitialized pointer to point at, pretty
much anything could happen. The fix is to check the return value of malloc,
and exit if malloc fails

iii. The 4th arguments to pthread_create point to memory that is dynamically

allocated by malloc but free()’d a short time later. Depending on whether the
created threads run first, they may attempt to reference memory that has been
freed, or worse, allocated and handed to somebody else! The fix is to not free
the memory until after the pthread_join().

iv. The producer and consumer threads both busy wait, but this assumes that the

threads are preemptively scheduled (as opposed to cooperatively context
switched). The fix is to check the man pages for the thread package and
operating system carefully. The bug would manifest itself as an infinite loop
(deterministically) if the thread package is not preemptive.

v. (not really a bug, but a performance flaw) Busy waiting is wasteful – you

ought to use a condition variable, or use sched_yield() if the OS or thread
package supports that system call.

vi. The line:

 if (production_done) return NULL;”

 might return before consuming everything that is produced. Replace with:

 if (production_done && (items_in_buffer == 0))

 This bug is timing dependent.

vii. There is the potential for a deadlock, as the locks are grabbed in different

orders by the different threads. Whether or not a deadlock happens is timing
dependent. The fix is for both threads to grab the locks in the same order.

 8

viii. The consume rthread releases the locks before it should -- if a context switch

happens between the time the consumer releases the locks and the time the
consumer does its printf, the producer could overwrite the item being printed
by the printf.

c. There’s no reason to have two locks – you could replace the two locks with a
single lock, as long as you made sure the single lock was held when reading or
writing from any of the shared variables.

d. (hard) It is possible to build a producer-consumer solution that uses no locks, but

only if there is a single producer and a single consumer. The trick is to define the
buffer as a circular array, with the producer having the right to modify a pointer
into the head of the array, and the consumer having the right to modify a pointer
to the tail. When the producer wants to add, it makes sure there is empty space by
comparing the tail to the head. When the consumer wants to consume, it does the
same thing. However, if there are more than one producer or consumer threads,
then you will need some kind of synchronization.

4. Use Java, C, or pseudo-code to implement:

 - monitors using semaphores
 - semaphores using monitors

 Your solution may *not* busy-wait.

monitors using semaphores:

 - the answer, for the most part, is in section 6.7 of the text.
 here's some brief pseudocode to fill in the blanks.

 Semaphore mutex = 1, next = 0;
 int next_count = 0;

 For each external procedure F:

 wait(mutex);
 ...
 body of F;
 ...
 if (next_count > 0)
 signal(next);
 else
 signal(mutex);

 9

 For each condition x

 int x_count = 0;
 semaphore x_sem = 0;

 ////////////////////////////
 // x.wait
 x_count = x_count + 1;
 if (next_count > 0)
 signal(next);
 else
 signal(mutex);
 wait(x_sem);
 x_count = x_count - 1;

 ////////////////////////////
 // x.signal
 if (x_count > 0) {
 next_count = next_count + 1;
 signal(x_sem);
 wait(next);
 next_count = next_count - 1;
 }

- semaphores using monitors:

 class Semaphore : public Monitor
 {
 protected:
 int count;
 condition cond;

 public:
 Semaphore(int initial) {
 count = initial;
 }

 void wait() {
 count = count - 1;
 while (count < 0) {
 cond.wait();
 }
 }

 void signal() {
 count = count + 1;
 cond.signal();
 }
 };

