
Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Lecture topics

l Buffer overflow exploits
l Data race exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

First of all, what’s a buffer?

l Buffer is a continuous block of memory that
holds multiple instances of the same data
type
°E.g. an array of characters

l Arrays in C can be allocated in several ways:
°Statically, allocated at load time
°Dynamically, allocated at run time on the program
stack
!The type we are interested in here

°Dynamically, allocated at run time on the heap



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

What’s a buffer overflow?

lWriting past the end of a buffer

l E.g.:
char large_string[20];
int i;
for( i = 0; i < 20; i++)
  large_string[i] = 'A';
char buffer[16];
char next_buffer[4];
strcpy(buffer,large_string);

l Used for stack smashing attacks

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Organization of memory for a process

l The text region contains code and read-only data
°Marked as read-only; write attempts result in segmentation

faults
l Initialized and uninitialized data region contains

static variables
l Stack is convenient to implement subprogram calls

° Stack frames are used to allocate by-value parameters and
local variables dynamically

° A stack pointer (SP) register points to the top of the stack
° The bottom of the stack is fixed

Text

Initialized data
Uninitialized data

Stack

Lower addresses

Upper addresses



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Example where buffer overflow causes
segmentation fault
void function(char *str) {
char buffer[16];
strcpy(buffer,str);

}
void main() {
char large_string[256];
int i;
for( i = 0; i < 255; i++)
  large_string[i] = 'A';
function(large_string);

}

Stack frame allocated for the call to function:

str*ipfpbuffer
Top of the stack

Address of
the instruction
to which this
call to function
should return
(instruction pointer)

Frame pointer;
local variables
are referenced
as offset from this
pointer

Character ‘A’ is
written here; is hex
value is 0x41414141;
it happens to be
outside of the process
memory space

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Example where stack manipulations are
used to change execution of the program
void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret; ret = buffer1 + 12;
(*ret) += 10;

}
void main() {
int x; x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);

}

Stack frame allocated for the call to function:

aipfpbuffer1
Top of the stack

cbbuffer2

Buffer buffer1 is really
8 bytes long (assuming
32-bit architecture –
words of 4 bytes each)Gets the address of

buffer1 plus 3 words ->
the address of ip

Adds 10 bytes to the
return address ->
assignment x=1 will
be skipped



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

How did we know to add 10 bytes to the
return address?
l Debuggers often come handy…  From running
gdb on the program:

$ gdb example3
GDB is free software and you are welcome to distribute copies of it under
certain conditions; type "show copying" to see the conditions. There is
absolutely no warranty for GDB; type "show warranty" for details. GDB 4.15
(i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc... (no
debugging symbols found)...
(gdb) disassemble main
Dump of assembler code for function main:
0x8000490 <main>: pushl %ebp
0x8000491 <main+1>: movl %esp,%ebp
0x8000493 <main+3>: subl $0x4,%esp
0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp)
0x800049d <main+13>: pushl $0x3
0x800049f <main+15>: pushl $0x2
0x80004a1 <main+17>: pushl $0x1
0x80004a3 <main+19>: call 0x8000470 <function>
0x80004a8 <main+24>: addl $0xc,%esp
0x80004ab <main+27>: movl $0x1,0xfffffffc(%ebp)
0x80004b2 <main+34>: movl 0xfffffffc(%ebp),%eax
0x80004b5 <main+37>: pushl %eax
0x80004b6 <main+38>: pushl $0x80004f8
0x80004bb <main+43>: call 0x8000378 <printf>
0x80004c0 <main+48>: addl $0x8,%esp
0x80004c3 <main+51>: movl %ebp,%esp
0x80004c5 <main+53>: popl %ebp
0x80004c6 <main+54>: ret
0x80004c7 <main+55>: nop

Instead of returning
here, we want to return
here

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

OK, but what if we want to force the
program to do something very specific?
l Simple --- fill a program with code you want
executed and set instruction pointer to the
beginning of this code

aipfpbuffer1

Top of the stack

cbbuffer2

Machine instructions are written in the buffers

Address of  is written in the
instruction pointer



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

What code do we write there?

l How about spawning a shell?
lWrite a C program:

#include <stdio.h>
void main() {
  char *name[2];
  name[0] = "/bin/sh";
  name[1] = NULL;
  execve(name[0], name, NULL);
}

l Compile and run gdb to get machine
instructions

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

A buffer overflow must exist in a program
and be exploitable for an attacker to take
advantage of the stack smashing attack
l The best defense is to avoid buffer
overflows
°Use a high-level language that does not allow
pointer arithmetic
°Avoid certain functions that can overflow buffers
or insert explicit checks
!strcpy copies all characters from the source buffer to

the destination buffer, without checking sizes
• Insert checks based on strlen
• Use strncpy

!gets reads user test until an end-of-file or newline
character

• Use fgets instead



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Race conditions
l Definition: A race condition is anomalous behavior

caused by the unexpected dependence on the
relative timing of events. In other words, a
programmer incorrectly assumed that a particular
event would always happen before another

l A typical example: a reader-writer problem
° A number of threads write to and read from a shared

buffer
° Each value is supposed to be written and read only once, in

a FIFO fashion
° A race condition occurs if two writer threads access the

buffer at the same time and only one value is written

l See Banking example

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

So, what is happening in the Banking
example?

Spender

newAmount=11000

newAmount=9000,
amount=10000

amount=9000

newAmount=8000

amount=11000

EarnerAccount

newAmount=12000

 return 

 return 

 deposit 1000 

 deposit 1000 

 withdraw 1000 

 withdraw 1000 



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Protecting data through synchronized
methods
l Any synchronized method can only be executed by

one thread at a time
° All synchronized methods for an object comprise a monitor

public class Account {
  // attributes

  public synchronized void deposit(int amount) {
    // as before
  }

  public synchronized void withdraw(int amount) {
    // as before
  }

  public synchronized int getBalance() {
    // as before
  }
}

Only one thread can
execute any of deposit,
withdraw, and getBalance
at any given time

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

What do the other threads do?

l If a thread t1 has to execute a
synchronized method of some object and
some other thread is already executing a
synchronized method of that object, t1
releases its resources and waits until the
other thread is done

l The language does not define the order in
which threads get access to synchronized
resources
°Does not have to be first in, first out order



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Synchronizing methods is not the only
mechanism for managing access by
threads in Java
lWhat if an account in the Banking Account
example is overdrawn?

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Using the wait() method to temporarily
suspend a thread executing in a monitor
l A thread may suspend itself by calling the
wait() method of the lock object
°If no object is specified, the this object is used
°Calls to wait() cannot occur outside
synchronized regions or methods
!A runtime exception is thrown

°After the call, the thread leaves the monitor
!Other threads may execute in this monitor

l Back to the example
°Make the thread executing the withdraw()
method of Account wait if the account is about
to be overdrawn



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

A note aside: deadlocks

l A deadlock is a situation where a number of
threads cannot continue because they wait on
some action from each other
°In the Bank Account example:
!The earner thread successfully terminates
!The spender thread is suspended after wait()
!The main thread is waiting for the withdrawer thread

to complete (executing the join() method)
!The program is permanently locked

l Deadlocks are always bad and should be
avoided

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Reviving suspended threads

l After a thread executes wait(), something
should un-suspend it at some point

l Done by some other thread calling either
notify() or notifyAll() method of the
lock object
°notify() selects (arbitrarily!) one of potentially
many waiting threads and un-suspends it
°notifyAll() un-suspends all waiting threads for
the given lock object

l Back to the example
°Make the thread executing the deposit()
method of Account un-suspend the thread that
may be waiting



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

When a thread is notified, how does it
proceed?
l The notified thread has to resume its
execution

l But it has to do so in a monitor
°Some other threads may be executing in this
monitor

l The notified thread waits until there are no
other threads in the monitor
°Just as if it was trying to execute a synchronized
region from the start

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

OK, so how is this related to security?

l The goal of an attacker is to do something in
parallel with a running program to force it to
do something bad

l The most common variety: time-of-check,
time-of-use (TOCTOU) exploits
°The program checks some security condition
before using some security sensitive resources
°The attacker lets it do a check and then hijacks
the resources



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

TOCTOU example: broken passwd
program on SunOS
l passwd changes a password for the user

running the program
l Takes the password file as input
l Performs 4 steps:

1. Open the password file and retrieve the entry
for the user running the program

2. Create and open a temp file called ptmp in the
same directory as the password file

3. Open the password file and copy the unchanged
contents into ptmp; write the changed password

4. Close both files, then rename ptmp to be the
password file

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

The attack
passwd program attacker

time

$ cd attack-dir
$ mkdir pwd
$ touch pwd/.rhosts
$ echo “localhost attacker :::::” >> pwd/.rhosts
$ ln –s pwd link
$ passwd link/.rhosts

Open attack-dir/pwd/.rhosts, read the entry
for the attacker $ rm link

$ ln –s target-dir link

Create and open a file ptmp in target-dir
$ rm link
$ ln –s pwd link

Open attack-dir/pwd/.rhosts, copy the
unchanged data in target-dir/ptmp

$ rm link
$ ln –s target-dir link

Close attack-dir/pwd/.rhosts and
target-dir/ptmp
Copy target-dir/ptmp to target-dir/.rhosts
Exit

Login as the user who owns target-dir
(root?), without a password



Page ‹#›

Lecture 3: Buffer overflow and race condition exploits

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Avoiding TOCTOU attacks

l Avoid file system calls that take file names
as inputs
°Use file handles instead

l Avoid using access call on files
°Checks if the process running the program has
permission to access the file

l Be careful when using temp files
°Attackers may be able to guess their names

l …

CS 916, Application Security                                                                                                                                                                © Gleb Naumovich

Not all race condition attacks use the file
system accesses
l In the Auction program:
°What happens if several users bid on the same
auction at roughly the same time?
°What happens if an administrator removes an
auction and a user bids on this auction at roughly
the same time?
°…


