
1

Advanced C for the 1337 kernel h@x0rs

Albert Wong (awong at cs dot washington dot edu) CSE 451 - wi03

M337 C

C is a procedural language.
This means there is no language support for writing OO code.
However, you can still write OO code. You just have to do it
manually. This is similar to Java having language features for
synchronizing threads and C/C++ not. You can still do
multithreaded code in C/C++.

What is C

• There are no classes. Structs are NOT the same
classes as they are in C++.

• You can only declare variables at the top of a block
(after an opening brace) before any other kind of
statement (except perhaps typedefs).

• There is no new/delete operators. Only malloc and
free functions.

• You use void*s a lot in C data structures.

Major syntactic differences in C

The C Preprocessor – Introduction
The preprocessor deals strictly in text. Here is a list of the standard

preprocessor directives and macros excluding #define.

• #include < filename>, #include “ filename” – expands into contents of the
given file into current position. The <> means to search the
standard include path for the file while the “” means to search the
current directory.

• #error message , #warning message – Causes the compiler to either halt
or issue a warning if this line is reached. Useful for debugging.

• #pragma –Passes options to the compiler. Options change from
compiler to compiler

• #if condition, #elsif condition, #endif – Includes or excludes a block of
text dependent on the value of the condition. #if 0 is useful for
removing a block of code from complication.

• __FILE__, __LINE__, __DATE__, __func__ – these macros expand
into strings representing the current file, line, date, and in c99, the
current function.

The C Preprocessor – #define basics
#define macros

#define SOME_LABEL To some list of literals
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define printf(x,…) fprintf(stdout, x, __VA_ARGS__)

• Macros can be used for quick and dirty constants.

Though is it often preferable nowadays to do:
const T name = value;

where T is a type. This is because this creates a variable with type info.

• Macros can be used to like functions. Think of them as a patterned
search and replace.
Some simple functions are often implemented as just a #define macro.
Common examples are “min” and “printf.” Many libraries implement them in a
fashion similar to the examples above.

You can even do variable argument macros by putting an elipse (“…”) in the
parameter list. The tag __VA_ARGS__ expands to all the extra arguments with
the comma. (You may notice a problem with our definition of “printf” given
our explanation of __VA_ARGS__. Most compilers extend the behav ior of
__VA_ARGS__ expansion to make up for this problem.)

The C Preprocessor – #define fun!
#define macros string manipulation operators

#define concat(x,y) x##y
#define mkstr(x) #x

• ## performs a concatenation of the two preprocessor arguments.
This may be useful for autogenerating mangled names or some other sort of
textual manipulation. Thus,

concat(wordA,wordB)

is equivalent to

wordAwordB

• # makes the following macro argument a string (with quotes).
It also chomps whitespace so everything is only 1 space. Thus:

mkstr(bu ha ha ha me lo lo weeeeeeee)

becomes

“bu ha ha ha me lo lo weeeeeeee”

Basic C type mechanisms – typedefs

Typedefs
typedef unsigned char byte;
typedef struct Name { int id; } Name;
typedef int (*Comparator)(void*, void*);

• Typedefs are a way of creating aliases for a type.
The example above makes byte have the same meaning to the compiler
as unsigned char.

• You use typedef for 3 reasons.
– Making a shorthand alias.

This is often done with structs and function pointers.

– Adding an extra level of abstractions to the type.
Say you’re waffling between using a short int or a long int.

– Designating a logical difference.
A byte is the same as an unsigned char, but when you see “byte”
you think of 8 bits where when you see “char” you think of ‘a’ or
something similar.

2

Basic C type mechanisms– structs

Structs
struct student { int id; char name[80]; };
• Structs are meant for designating a memory structure.

They ensure that the items in a struct are arranged in a particu lar order
in memory.

• They are not classes.
There is no language implemented support for inheritance or methods.
However, with some discipline, one can simulate the functionality pretty
well for the most part.

• There are no protection facilities (everything is public)

• You use structs for 2 reasons
– Ordering memory

Because structs guarantee a memory layout, they are useful for
communicating with hardware.

– Grouping related items
This is more common usage, though it is kind of a side effect of
the ordering behavior. You can use this to create really dumb
“objects”.

Basic C type mechanisms – union

Union - Unioned types
union someUnion { int asInt; double asDouble; };

• Gives one location in memory, multiple type interpretations.
• This is probably one of the more useless types…unless you’re

implementing some sort of polymorphism or talking to hardware.

• You use unions for 3 reasons
– You want to save memory and you need to at any given time

represent one of a number of types.
You can use a union to declare a variable that represents those
types.

– You need a location in memory to have more than 1
semantic meaning.
This may happen if you are talking to hardware (a memory mapped
register may have more than 1 type it represents). Or it may
happen in parameter passing or some other esoteric situations

– You want to screw with someone’s head.
‘nuff said.

Basic C type mechanisms – enums

Enums - enumerated types
enum Color { RED, GREEN, BLUE };

• Creates a type with a limited set of label values.
• Creates a mapping from a label to a unique integer.

• You use enumsfor 2 reasons
– Making an “option” type

You can restrict the values assigned to the enum, so this is a
natural usage.

– Integral constants (kind of a misuse)
Since enums values are in effect, integers, they can be used as
constants. This is kind of a hack, but it is common. You can
assign specific numbers to each enum value if you want.

Basic C type mechanisms – pointers

Pointers - memory locations
T *name = NULL;

• Pointers are variables that hold a number representing a location
in memory.

• Pointer arithmetic increments by units of type, not by address
location. short n; is 2 bytes. So short *pn = (short*)10; pn++;
will yield pn == (short*)12.

• Pointers are the size of the natural machine word. That means
they are the same size as an int or a size_t.

• Pointers to functions do not need to explicit dereference syntax to
use it. The compiler will do it implicitly for you.

• Use pointers to const types if you wish to pass without requiring a
copy.

Advanced C types – arrays

Arrays - homogenous block of 1 type
T name[30];

• ARRAYS ARE NOT POINTERS
• Arrays are not lvalues. You cannot say “name = & var;” or

anything similar.
• The array name is the location in memory. It is not a variable

holding an address of a location in memory. There is no space
allocated for holding the address; it is resolved at compile time.

• Arrays have dimension. You can declare pointers to arrays of a
specific dimension: char (*)name[3];. This is a pointer to an
array of 3 chars.

Advanced C types – void *

Void Pointers
void *ptr;

• Void pointers are refer to a generic untyped location in memory.
• That means they have no type.
• You must cast a void * to a typed pointer before using it in C.
• Any pointer will be implicitly promoted to a void* on assignment.
• You cannot perform pointer arithmetic on a void*.
• If you want to do arithmetic on the pointer in terms of memory

addresses (rather than in terms of types), cast it to an unsigned
char*.

• You use void* for 2 reasons
– Generic programming

They are the analogue to Java’s Object type. Indeed they are even
more general. For this reason, they are actually used more
sparingly.

– Generic memory reference.
Sometimes you really mean “this is just a chunk of memory.” Often
times, this I represented as either a void* or a char*. One example
of where void* is used is in malloc and free (the analogues to new
and delete).

3

Advanced C types – function pointers

Function Pointers
int (*name)(int param, int param);

• Functions are just blocks of code at some location in memory.
Thus they can be pointed to. :)

• The type of a function can be determined by its signature (return
type and parameter list).

• The syntax for a declaring a function pointer is ugly, but you do
not need to dereference the pointer to use it. Thus, after the above
example, both name(1,2); and (*name)(1,2);are valid.

• Often, one typedefs function pointers before using it.
typedef int (*Comparator)(void*,void*);

Creates a typedef called “Comparator” for functions with the signature
int (void*,void*). Now, you can cast, and declare pointers of this type by
just saying Comparator foo; or (Comparator) myptr;

• You use void* for 1 reasons
– Generic programming where the function is only known a

runtime.
If you have a hash table where you would like to be able to define a
hash function on creation, you can make its initializer take a
function pointer to a hash function.

Advanced C type modifiers – inline

Inline
int inline func(void);

• The first rule of inline is, don’t use it.
• The second rule is if you really are going to, make sure you know

why you are going to do it.
• Inline hints to the compiler that this function should be unrolled an

inlined into wherever it is called. This can avoid function call
overhead.

• Problems with inline:
– The compiler may happily ignore this. It’s kind of like the register

keyword in this manner. It is merely a hint; it is not a command.
– The compiler often knows better than you. It’ll inline for you

anyways if something is small enough and inlining seems smart.
– You may (and probably will) make your program size larger.
– You may make your program slower. Read the previous bullet as

“cache miss” or “page fault”.

Inline is a compiler hint. It really has no place in a high lev el
language, but it is here because C isn’t completely high level.

Advanced C type modifiers – static, extern

Static
static int func(void);
static int i;
int foo() { static int i = 4; … }

• Static has 2 meanings in C (3 in C++).
– Restrict the visibility of the current identifier to the current

translation unit. Essentially, make it private to a file. The
equivalent in C++ is an anonymous namespace.

– Allocate memory for the following variable in the static memory
region (not on the stack or the heap).

• static local variables have their initializer called only once during a
program’s lifetime (somewhere before first usage, usually at
program load).

• uninitialized static variables are by defaulted zeroed.
• static variables in header files are only done by the braindead.
• static functions in header files that are not inline are only done by

the braindead or the incredibly wise.

Advanced C type modifiers – const, volatile, restrict

const
const int i = 5;
const char *buf;
• const does what it implies; it makes something constant.
• It is officially part of c99, but has been floating around many

compilers (including gcc) for a while.
• It does is very useful with pointers to make a safe pass w/o copy

argument.

volatile
volatile int i = 5;
volatile void *ptr;
• volatile tells the compiler to not optimize this variable.
• Often it is used when accessing hardware. It means that the

compiler cannot even assume that in the code: i = 4; if (i==4) {…}
the if block will necessarily execute since imay have changed.

restrict
void strcpy(char restrict *ptr, char restrict *ptr2);
• Restrict is a c99 extension that tells the compiler that all pointers

under the current context refer to mutually exclusive objects.
• It is for optimization purposes only. Don’t use unless you really

know what you are doing.

Advanced C type modifiers – extern

extern
extern int func(void);
extern int i;

• extern tells the compiler to not generate storage for the following
variable.

• Function prototypes are by default extern. (Just like local variables
are by default auto.)

• All global variables in a header file shall be declared extern on
pain of link error.

• All externed variables or functions must be allocated storage
somewhere. It must only be allocated storage once!!!!

• There is no protection for mismatching the definition of the
variable with the declaration in 2 different translation units. That
mans if you define i to be char i; in foo.c and then declare it as
extern int i; in main.c and then use it, your code will compiler and
link, but you will have problems.

Random stuff

• __attribute__. This is a gcc compiler extension that allows you to
specify extra attributes to the compiler for a variable or function
such as which memory segment it should go in.

• In C, you must explicitly say void in your function parameter list,
otherwise, the compiler thinks that you have a variable argument
list (like printf).

• To explicitly declare a variable argument list, you write put an
ellipse for your last argument.

• If you do not declare a function before trying to use it, C
automatically assumes it has a return type of int and that it takes
variable arguments.

• printf(“%x\n”,…) is your friend.
• static variables cannot be affected by stack corruption. Useful for

debugging. Don’t leave it in your production code though.

