CSE 451: Operating Systems
Winter 2004

Module 7
Semaphores and Monitors

Ed Lazowska
lazowska@cs.washington.edu
Allen Center 570

Semaphores

« Semaphore = a synchronization primitive
— higher level than locks
— invented by Dijkstra in 1968, as part of the THE operating
system
« A semaphore is:
— avariable that is manipulated atomically through two
operations, P(sem) (wait) and V(sem) (signal)
* P and V are Dutch for “wait” and “signal”
« Plus, you get to say stuff like “the thread p’s on the semaphore”

— P(sem): block until sem > 0, then subtract 1 from sem and
proceed
— V(sem): add 1 to sem

4/1/2004 © 2004 Ed Lazowska & Hank Levy 2

Two types of semaphores

« Binary semaphore (aka mutex semaphore)

— guarantees mutually exclusive access to resource (e.g., a
critical section of code)

— only one thread allowed entry at a time
— semis initialized to 1
« Counting semaphore
— represents a resources with many units available
— allows threads to enter as long as more units are available
— sem is initialized to N
« N = number of units available

« We'll mostly focus on binary semaphores

4/1/2004 ©2004 Ed Lazowska & Hank Levy 3

Usage

* From the programmer’s perspective, P and V on a
binary semaphore are just like Acquire and Release
on a lock

P(sem)

do whatever stuff requires mutual exclusion; could conceivably
be a lot of code

V(éem)
— same lack of programming language support for correct
usage
< Important differences in the underlying
implementation, however

4/1/2004 ©2004 Ed Lazowska & Hank Levy 4

Blocking in semaphores

« Each semaphore has an associated queue of threads

— when P(sem) is called by a thread,
« if sem was “available” (>0), decrement sem and let thread
continue
« if sem was “unavailable” (<=0), place thread on associated
queue; run some other thread
— When V(sem) is called by a thread
« if thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)
« if no threads are waiting on the associated queue, increment
sem
— the signal is “remembered” for next time P(sem) is called
« might as well let the “V-ing” thread continue execution

411/2004 ©2004 Ed Lazowska & Hank Levy 5

Implementation

— P(sem)
« acquire “real” mutual exclusion
if sem was “available” (>0), decrement sem
release “real” mutual exclusion; let thread continue
if sem was “unavailable” (<=0), place thread on associated
queue and release “real” mutual exclusion; run some other
thread
— When V(sem) is called by a thread
acquire “real” mutual exclusion
if thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)
if no threads are on the queue, sem is incremented
— the signal is “remembered” for next time P(sem) is called
release “real” mutual exclusion
might as well let the “V-ing” thread continue execution

4/1/2004 ©2004 Ed Lazowska & Hank Levy 6

Pressing questions

« How do you acquire “real” mutual exclusion?

« Why is this any better than using a spinlock (test-and-
set) or disabling interrupts (assuming you're in the
kernel) in lieu of a semaphore?

« What if some bozo issues an extra V?
* What if some bozo forgets to P?

4/1/2004 ©2004 Ed Lazowska & Hank Levy 7

Example: Bounded buffer problem

« AKA producer/consumer problem
— there is a buffer in memory
« with finite size N entries
— aproducer thread inserts entries into it
— a consumer thread removes entries from it
* Threads are concurrent

— s0, we must use synchronization constructs to control
access to shared variables describing buffer state

4/1/2004 © 2004 Ed Lazowska & Hank Levy 8

Bounded buffer using semaphores
(both binary and counting)

var mutex: semaphore =1 ;mutual exclusion to shared data
empty: semaphore =n ;count of empty buffers (all empty to start)

full: semaphore =0 ;count of full buffers (none full to start)
producer:
P(empty) ; one fewer buffer, block if none available
P(mutex) ; get access to pointers
<add item to buffer> Note 1: | have spared you a
V(mutex) ; done with pointers repeat of the clip-art!
V(full) ; note one more full buffer Note 2: | have elided all the
consumer: code concerning which is
P(full) ;wait until there's a full buffer ::e lflrsttfful‘ll Eu;‘;er, Wlh“:h s
P(mutex) ;get access to pointers e fast 1ull butter, etc.
<remove item from buffer> Note 3: Try to figure out
V(mutex) ; done with pointers how to do this without using
V(empty) ; note there’s an empty buffer | counting semaphores!

<use the item>

4/1/2004 ©2004 Ed Lazowska & Hank Levy 9

Example: Readers/Writers

* Basic problem:
— object is shared among several processes
— some read from it
— others write to it

* We can allow multiple readers at a time

Readers/Writers using semaphores

var mutex: semaphore ; controls access to readcount
clear: semaphore ; control entry for a writer or first reader
readcount: integer ; number of active readers
writer:
P(clear) ; any writers or readers?
<perform write operation>
V(clear) ; allow others
reader:
P(mutex) ; ensure exclusion
readcount = readcount + 1 ; one more reader
if readcount = 1 then P(clear) ; if we're the first, synch with writers
V(mutex)
<perform reading>
P(mutex) ; ensure exclusion
readcount = readcount—1 ; one fewer reader

if readcount = 0 then V(clear) ; no more readers, allow a writer
V(mutex)

4/1/2004 ©2004 Ed Lazowska & Hank Levy 11

— why?
« We can only allow one writer at a time
— why?
4/1/2004 © 2004 Ed Lazowska & Hank Levy 10
Readers/Writers notes
* Note:

— the first reader blocks if there is a writer
« any other readers will then block on mutex
— if a waiting writer exists, last reader to exit signals waiting
writer
« can new readers get in while writer is waiting?
— when writer exits, if there is both a reader and writer waiting,
which one goes next is up to scheduler

4/1/2004 © 2004 Ed Lazowska & Hank Levy 12

Semaphores vs. locks

« Threads that are blocked at the level of program logic
are placed on queues, rather than busy-waiting

* Busy-waiting is used for the “real” mutual exclusion
required to implement P and V, but these are very
short critical sections — totally independent of
program logic

< In the not-very-interesting case of a thread package
implemented in an address space “powered by” only
a single kernel thread, it's even easier that this

4/1/2004 ©2004 Ed Lazowska & Hank Levy 13

Problems with semaphores

« They can be used to solve any of the traditional
synchronization problems, but:
— semaphores are essentially shared global variables
« can be accessed from anywhere (bad software engineering)
— there is no connection between the semaphore and the data
being controlled by it
— used for both critical sections (mutual exclusion) and for
coordination (scheduling)
— no control over their use, no guarantee of proper usage
¢ Thus, they are prone to bugs
— a better approach: use programming language support

4/1/2004 © 2004 Ed Lazowska & Hank Levy 14

Monitors

« A monitor is a software module that encapsulates:
— shared data structures
— procedures that operate on the shared data
— synchronization between concurrent threads that invoke
those procedures

« Data can only be accessed from within the monitor
— protects the data from unstructured access

¢ Synchronization code (calls to synchronization
routines in the thread package) is added by compiler
— why does this help?

« Addresses the key usability issues that arise with
semaphores

4/1/2004 ©2004 Ed Lazowska & Hank Levy 15

A monitor

waiting queue of threads
trying to enter the monitor l:|

at most one thread operations (procedures)
in monitor at a
time
4/1/2004 © 2004 Ed Lazowska & Hank Levy 16

Monitor facilities

« “Automatic” mutual exclusion
— only one thread can be executing inside at any time
« thus, synchronization “comes for free” with monitor
— if a second thread tries to execute a monitor procedure, it blocks
until the first has left the monitor
« Condition variables
— once inside, a thread may discover it can't continue, and may
wish to block (or allow some other waiting thread to continue)
— it can wait on a condition variable, or signal others to continue
« condition variables can only be accessed from within monitor
« athread that waits “steps outside” the monitor (onto a wait queue
associated with that condition variable)

« what happens to a thread that signals depends on the precise
monitor semantics that are used — “Hoare” vs. “Mesa”

4/1/2004 © 2004 Ed Lazowska & Hank Levy 17

Condition variables

« A place to wait; sometimes called a rendezvous point
* Three operations on condition variables
— wait(c)
« release monitor lock, so somebody else can get in
« wait for somebody else to signal condition
« thus, condition variables have associated wait queues
— signal(c)
« wake up at most one waiting thread
« if no waiting threads, signal is lost
— this is different than semaphores: no history!
— broadcast(c)
+ wake up all waiting threads
« (ignore for now)

4/1/2004 © 2004 Ed Lazowska & Hank Levy 18

Bounded buffer using Hoare monitors Runtime system calls for Hoare monitors
Monitor bounded_buffer { « EnterMonitor(m) {guarantee mutual exclusion}
buffer resources[N]; ; .) .
condition not_full, not_empty; « ExitMonitor(m) {hit the road, letting someone else run}
* Wait(c) {step out until condition satisfied}
procedure add_entry(resource x) { . . R .
if (array “resources” is full, determined maybe by a count) Slgnal(c) {If someone’s waiting, step out and let him run}
wait(not_full);
insert “x” in array “resources”
signal(not_empty);
}
procedure get_entry(resource *x) {
if (array “resources” is empty, determined maybe by a count)
wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}

4/1/2004 © 2004 Ed Lazowska & Hank Levy 19 4/1/2004 © 2004 Ed Lazowska & Hank Levy

20

Bounded buffer using Hoare monitors Runtime system calls for Hoare monitors

Monitor bounded_buffer {

ot n « EnterMonitor(m) {guarantee mutual exclusion}
er resources|N|; N . . .
uHer resou NI . — if m occupied, insert caller into queue m
condition not_full, not_empty; N))
— else mark as occupied, insert caller into ready queue
procedure add_entry(resource x) { EnterMonitor — choose somebody to run
if (ari(ay ;"isﬁ)“’ces“ is full, determined maybe by a count) « ExitMonitor(m) {hit the road, letting someone else run}
wait(not_tull); . . .
insert “x" in array “resources” — if queue m is empty, then mark m as unoccupied
signal(not_empty); ExitMonitor — else move a thread from queue m to the ready queue
} — insert caller in ready queue
procedure get_entry(resource *X) { EnterMonitor — choose someone to run
if (array “resources” is empty, determined maybe by a count)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full); ExitMonitor

}

4/1/2004 ©2004 Ed Lazowska & Hank Levy

21 4/1/2004 ©2004 Ed Lazowska & Hank Levy 22

Two kinds of monitors: Hoare and Mesa

« Wait(c) {step out until condition satisfied}
— if queue m is empty, then mark m as unoccupied
— else move a thread from queue m to the ready queue
— put the caller on queue ¢
— choose someone to run

« Hoare monitors: signal(c) means
— run waiter immediately
— signaller blocks immediately
« condition guaranteed to hold when waiter runs
« but, signaller must restore monitor invariants before signalling!

. . s . . — cannot leave a mess for the waiter, who will run immediately!
¢ Signal(c) {if someone’s waiting, step out and let him run} . .
’ . * Mesa monitors: signal(c) means
— if queue c is empty then put the caller on the ready queue o d v, but the signall .
— else move a thread from queue c to the ready queue, and put the — waiter is made ready, but the signaller continues

caller into queue m

« waiter runs when signaller leaves monitor (or waits)
— choose someone to run

— signaller need not restore invariant until it leaves the monitor

— being woken up is only a hint that something has changed
« must recheck conditional case

4/1/2004 © 2004 Ed Lazowska & Hank Levy 23

4/1/2004 © 2004 Ed Lazowska & Hank Levy 24

* Hoare monitors
— if (notReady)
* wait(c)
* Mesa monitors
— while(notReady)
« wait(c)

* Mesa monitors easier to use
— more efficient
— fewer switches
— directly supports broadcast
* Hoare monitors leave less to chance

— when wake up, condition guaranteed to be what you expect

4/1/2004 © 2004 Ed Lazowska & Hank Levy

25

Runtime system calls for Mesa monitors

« EnterMonitor(m) {guarantee mutual exclusion}

« ExitMonitor(m) {hit the road, letting someone else run}

* Wait(c) {step out until condition satisfied}

¢ Signal(c) {if someone’s waiting, give him a shot after I'm
done}

— if queue c is occupied, move one thread from queue c to queue m
— return to caller

4/1/2004 © 2004 Ed Lazowska & Hank Levy 26

* Broadcast(c) {food fight'}
— move all threads on queue c onto queue m
— return to caller

4/1/2004 ©2004 Ed Lazowska & Hank Levy

27

Summary

+ Language supports monitors

» Compiler understands them
— compiler inserts calls to runtime routines for
* monitor entry
* monitor exit
« signal
* wait
* Runtime system implements these routines
— moves threads on and off queues
— ensures mutual exclusion!

4/1/2004 © 2004 Ed Lazowska & Hank Levy 28

