
CSE 451: Operating Systems

Autumn 2001

Lecture 11

Demand Paging and

Page Replacement

4/23/04 © 2001 Brian Bershad 2

Demand Paging

• We’ve hinted that pages can be moved between
memory and disk
– this process is called demand paging

• is different than swapping (entire process moved, not page)

– OS uses main memory as a (page) cache of all of the data
allocated by processes in the system

• initially, pages are allocated from physical memory frames

• when physical memory fills up, allocating a page in requires
some other page to be evicted from its physical memory frame

– evicted pages go to disk (only need to write if they are dirty)
• to a swap file

• movement of pages between memory / disk is done by the OS

• is transparent to the application
– except for performance…

4/23/04 © 2001 Brian Bershad 3

Page Faults

• What happens to a process that references a VA in a
page that has been evicted?
– when the page was evicted, the OS sets the PTE as invalid

and stores (in PTE) the location of the page in the swap file
– when a process accesses the page, the invalid PTE will

cause an exception (page fault) to be thrown
– the OS will run the page fault handler in response

• handler uses invalid PTE to locate page in swap file
• handler reads page into a physical frame, updates PTE to point

to it and to be valid
• handler restarts the faulted process

• But: where does the page that’s read in go?
– have to evict something else (page replacement algorithm)

• OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions

© 2001 Brian Bershad

What do you do to pages?

• If the page is dirty, you have to write it out to disk.
– record the disk block number for the page in the PTE.

• If the page is clean, you don’t have to do anything.
– just overwrite the page with new data

– make sure you know where the old copy of the page came from

• Want to avoid THRASHING
– When a paging algorithm breaks down

– Most of the OS time spent in ferrying pages to and from disk

– no time spent doing useful work.

– the system is OVERCOMMITTED
• no idea what pages should be resident in order to run effectively

– Solutions include:
• SWAP

• Buy more memory

4/23/04 © 2001 Brian Bershad 5

Why does demand paging work?

• Locality!
– temporal locality

• locations referenced recently tend to be referenced again soon

– spatial locality
• locations near recently references locations are likely to be

referenced soon (think about why)

• Locality means paging can be infrequent
– once you’ve paged something in, it will be used many times

– on average, you use things that are paged in

– but, this depends on many things:
• degree of locality in application

• page replacement policy and application reference pattern

• amount of physical memory and application footprint

4/23/04 © 2001 Brian Bershad 6

Why is this “demand” paging?

• Think about when a process first starts up:
– it has a brand new page table, with all PTE valid bits ‘false’

– no pages are yet mapped to physical memory

– when process starts executing:
• instructions immediately fault on both code and data pages

• faults stop when all necessary code/data pages are in memory

• only the code/data that is needed (demanded!) by process
needs to be loaded

• what is needed changes over time, of course…

© 2001 Brian Bershad

Finding the Best Page

• A good property
– if you put more memory on the machine, then your page fault rate

will go down.

– Increasing the size of the resource pool helps everyone.

• The best page to toss out is the one you’ll never need again
– that way, no faults.

• Never is a long time, so picking the one closest to “never” is the
next best thing.
– Replacing the page that won’t be used for the longest period of

time absolutely minimizes the number of page faults.

– Example:
• B C B A E B D E C B E B

• Three page frames

• what page to toss on each fault?

4/23/04 © 2001 Brian Bershad 8

Evicting the best page

• The goal of the page replacement algorithm:
– reduce fault rate by selecting best victim page to remove

– the best page to evict is one that will never be touched again
• as process will never again fault on it

– “never” is a long time
• Belady’s proof: evicting the page that won’t be used for the

longest period of time minimizes page fault rate

• Rest of this lecture:
– survey a bunch of replacement algorithms

© 2001 Brian Bershad

Optimal Algorithm

• The optimal algorithm, called Belady’s algorithm,
has the lowest fault rate for any reference string.

• Basic idea: replace the page that will not be used
for the longest time in the future.

• Basic problem: hard to know the future
• Basic use: gives us an idea of how well any

implementable algorithm is doing relative to the
best possible algorithm.
– compare the fault rate of any proposed algorithm to Optimal
– if Optimal does not do much better, then your proposed

algorithm is pretty good.
– If your proposed algorithm doesn’t do much better than

Random, go home.

© 2001 Brian Bershad

Evaluating Replacement Policies

Eff. Access.Time = (1-p)*Tm + p*Td
Tm = time to access main memory
 Td = time to fault

Execution time = (roughly) #memory refs * E.A.T.

of physical page frames

execution
time

Random

LRU

Opt

Down in
this
range,
it doesn’t
matter so
much what
you do.

In here,
you can
expect to
have some
effect.

Up here,
forget it.

4/23/04 © 2001 Brian Bershad 11

#1: Belady’s Algorithm

• Provably optimal lowest fault rate
– pick the page that won’t be used for longest time in future

– problem: impossible to predict future

• Why is Belady’s algorithm useful?
– as a yardstick to compare other algorithms to optimal

• if Belady’s isn’t much better than yours, yours is pretty good

• Is there a lower bound?
– unfortunately, lower bound depends on workload

• but, random replacement is pretty bad

4/23/04 © 2001 Brian Bershad 12

#2: FIFO

• FIFO is obvious, and simple to implement
– when you page in something, put in on tail of list

– on eviction, throw away page on head of list

• Why might this be good?
– maybe the one brought in longest ago is not being used

• Why might this be bad?
– then again, maybe it is being used

– have absolutely no information either way

• FIFO suffers from Belady’s Anomaly
– fault rate might increase when algorithm is given more

physical memory
• a very bad property

© 2001 Brian Bershad

An Example of Optimal and FIFO in
Action

Reference stream is A B C A B D A D B C

OPTIMAL
A B C A B D A D B C B

toss A or Dtoss C5 Faults

FIFO
A B C A B D A D B C B

toss A

A
B
C
D
A
B
C

toss ?7 Faults

4/23/04 © 2001 Brian Bershad 14

#3: Least Recently Used (LRU)

• LRU uses reference information to make a more
informed replacement decision
– idea: past experience gives us a guess of future behavior

– on replacement, evict the page that hasn’t been used for the
longest amount of time

• LRU looks at the past, Belady’s wants to look at future

– when does LRU do well?
• when does it suck?

• Implementation
– to be perfect, must grab a timestamp on every memory

reference and put it in the PTE (way too $$)

– so, we need an approximation…

4/23/04 © 2001 Brian Bershad 15

Approximating LRU

• Many approximations, all use the PTE reference bit
– keep a counter for each page

– at some regular interval, for each page, do:
• if ref bit = 0, increment the counter (hasn’t been used)

• if ref bit = 1, zero the counter (has been used)

• regardless, zero ref bit

– the counter will contain the # of intervals since the last
reference to the page

• page with largest counter is least recently used

• Some architectures don’t have PTE reference bits
– can simulate reference bit using the valid bit to induce faults

• hack, hack, hack

4/23/04 © 2001 Brian Bershad 16

#4: LRU Clock

• AKA Not Recently Used (NRU) or Second
Chance
– replace page that is “old enough”
– arrange all physical page frames in a big

circle (clock)
• just a circular linked list

– a “clock hand” is used to select a good LRU
candidate

• sweep through the pages in circular order like
a clock

• if ref bit is off, it hasn’t been used recently, we
have a victim

– so, what is minimum “age” if ref bit is off?

• if the ref bit is on, turn it off and go to next
page

– arm moves quickly when pages are needed
– low overhead if have plenty of memory
– if memory is large, “accuracy” of information

degrades
• add more hands to fix

P0 P1

P2

4/23/04 © 2001 Brian Bershad 17

Another Problem: allocation of frames

• In a multiprogramming system, we need a way to
allocate physical memory to competing processes
– what if a victim page belongs to another process?

– family of replacement algorithms that takes this into account

• Fixed space algorithms
– each process is given a limit of pages it can use

– when it reaches its limit, it replaces from its own pages

– local replacement: some process may do well, others suffer

• Variable space algorithms
– processes’ set of pages grows and shrinks dynamically

– global replacement: one process can ruin it for the rest
• linux uses global replacement

4/23/04 © 2001 Brian Bershad 18

Important concept: working set model

• A working set of a process is used to model the
dynamic locality of its memory usage
– i.e., working set = set of pages process currently “needs”

– formally defined by Peter Denning in the 1960’s

• Definition:
– WS(t,w) = {pages P such that P was referenced in the time

interval (t, t-w)}
• t – time, w – working set window (measured in page refs)

• a page is in the working set (WS) only if it was referenced in the
last w references

t

w
time

references

4/23/04 © 2001 Brian Bershad 19

#5: Working Set Size

• The working set size changes with program locality
– during periods of poor locality, more pages are referenced

– within that period of time, the working set size is larger

• Intuitively, working set must be in memory, otherwise you’ll experience
heavy faulting (thrashing)
– when people ask “How much memory does Netscape need?”, really they

are asking “what is Netscape’s average (or worst case) working set size?”

• Hypothetical algorithm:
– associate parameter “w” with each process

– only allow a process to start if it’s “w”, when added to all other processes,
still fits in memory

• use a local replacement algorithm within each process

• But, we have two problems:
• how do we select w?

• how do we know when the working set changes?

• So, working set is not used in practice.

4/23/04 © 2001 Brian Bershad 20

#6: Page Fault Frequency (PFF)

• PFF is a variable-space
algorithm that uses a more
ad-hoc approach
– monitor the fault rate for each

process
– if fault rate is above a given

threshold, give it more
memory

• so that it faults less
• doesn’t always work (FIFO,

Belady’s anomaly)

– if the fault rate is below
threshold, take away memory

• should fault more
• again, not always

TIME

Fault
Rate

4/23/04 © 2001 Brian Bershad 21

Thrashing

• What the OS does if page replacement algo’s fail
– happens if most of the time is spent by an OS paging data back

and forth from disk
• no time is spent doing useful work
• the system is overcommitted
• no idea which pages should be in memory to reduced faults
• could be that there just isn’t enough physical memory for all processes

– solutions?

• Yields some insight into systems research[ers]
– if system has too much memory

• page replacement algorithm doesn’t matter (overprovisioning)

– if system has too little memory
• page replacement algorithm doesn’t matter (overcommitted)

– problem is only interesting on the border between overprovisioned
and overcommitted

• many research papers live here, but not many real systems do…

4/23/04 © 2001 Brian Bershad 22

Summary

• demand paging
– start with no physical pages mapped, load them in on demand

• page replacement algorithms
– #1: Belady’s – optimal, but unrealizable

– #2: Fifo – replace page loaded furthest in past

– #3: LRU – replace page referenced furthest in past
• approximate using PTE reference bit

– #4: LRU Clock – replace page that is “old enough”

– #5: working set – keep set of pages in memory that induces the
minimal fault rate

– #6: page fault frequency – grow/shrink page set as a function of
fault rate

• local vs. global replacement
– should processes be allowed to evict each other’s pages?

