
CSE 451: Operating Systems

Spring 2004

Module 1

Course Introduction

Brian Bershad

bershad@cs.washington.edu

562 Allen Center

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 2

Today’s agenda

• Administrivia
– course overview

• course staff

• general structure

• your to-do list

– overloading

• OS overview
– functional

• resource mgmt, major issues

– historical

• batch systems, multiprogramming, time shared OS’s

• PCs, networked computers

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 3

Course overview

• Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/education/courses/451/CurrentQtr

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 4

• But to tide you over for the next hour …
– course staff

• Brian Bershad (bershad@cs.washington.edu)

• Kararyzna Wilamowska (kasiaw@cs.washington.edu)

• Ilya Vladimirovich Maykov (uvmaykov@cs.washington.edu)

– general structure

• read the text prior to class

• class will supplement rather than regurgitate the text

• sections will focus on the project

• we really want to encourage discussion, both in class and in
section

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 5

– your to-do list …

• please read the entire course web thoroughly, today

• please get yourself on the cse451 email list, today, and check
your email daily

• homework 1 (reading + problems) is posted on the web now;
due Friday

• project 1 is posted on the web now and will be discussed in
section on Thursday; due a week from Friday

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 6

Overloading

• If you’re going to drop this course
– please do it soon!

• If you want to get into this course
– plan for the worst case

– but, make sure you’ve filed a petition with the advisors

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 7

Required Background

• Processor fundamentals

• Compiler fundamentals

• Programming in C

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 8

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources

– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

3/30/04 9

DOS

What is Windows?

Application

© John DeTreville, Microsoft Corp. 3/30/04 10

DOS

What is Windows?

Windows

Installer

COM

Printing

TCP/IPBrowser

……

……

Application

Application

© John DeTreville, Microsoft Corp.

3/30/04 11

Internet

What is .NET?

Application

© John DeTreville, Microsoft Corp. 3/30/04 12

magicmagic

Internet

What is .NET?

.NET

Device

independence

XML

Identity

& security

AsynchronyExtensibility

……

Application

eBay FedExBank

© John DeTreville, Microsoft Corp.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 13

The OS and hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)

– Volatile storage (memory) and persistent storage (disk, etc.)

– Network communications (TCP/IP stacks, ethernet cards, etc.)

– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)

– files (disk)

• programs (sequences of instructions)

– sockets (network)

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 14

Why bother with an OS?

• Application benefits
– programming simplicity

• see high-level abstractions (files) instead of low-level hardware
details (device registers)

• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer

• OS protects programs from each other

• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users

• concurrent execution of multiple programs

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 15

The major OS issues

• structure: how is the OS organized?

• sharing: how are resources shared across users?

• naming: how are resources named (by users or programs)?

• security: how is the integrity of the OS and its resources
ensured?

– protection: how is one user/program protected from another?

• performance: how do we make it all go fast?

• reliability: what happens if something goes wrong (either with
hardware or with a program)?

• extensibility: can we add new features?

• communication: how do programs exchange information,
including across a network?

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 16

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?

• persistence: how do you make data last longer than program
executions?

• distribution: how do multiple computers interact with each
other?

• accounting: how do we keep track of resource usage, and
perhaps charge for it?

• manageability: how do we adapt a system to a particular
environment

– “management is whatever you need to do that you can’t write an
algorithm for.”

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 17

A Brief History of Computing

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 18

Inflection Point #0: 19th Century

• Machines can do things faster than people

Business Number Crunching
Technology: 1880-1920

Tabulators

electronic and mechanical

popular in the insurance industry and

w/employers

CTR

Adders

+ (and sometimes -)

mechanical devices

slow, clunky

Calculators

+-*/

mechanical devices

slow, clunky, $$

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 19

Automatic Calculators:
“Bigger Must be Better”

In the very beginning…
– There was no OS and there was no

program.

– Just levers, computation, and output
(think Big Calculator)

– Problem: Really Hard to Use

The Bush Differential Analyzer

• Built in 1931

• Analog and Decimal

– poor accuracy -- 1%

• Big & Slow

– all mechanical

– 100 tons

• Only one of them

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 20

Iowa in 1937

John Vincent Atanasoff

(A math & physics guy)

In the treatment of many mathematical

problems one requires the solution of

systems of linear simultaneous

algebraic equations.

•Curve fitting.

•Method of least squares.

•Vibration problems including

the vibrational Raman effect.

•Electrical circuit analysis.

•Analysis of elastic structures.

•Approximate solution of many

problems of elasticity.

•Approximate solution of

problems of quantum

mechanics.

•Perturbation theories of

mechanics, astronomy and the

quantum theory.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 21

John Atanasoff Invents the First
Electronic Calculator

•3kbits of RAM

•30 calculations/minute

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 22

Key Technical Ideas

• Binary rather than decimal

• Vacuum tubes for logic rather than storage

• Inexpensive rotating capacitors for (cheap) temporary
storage

• Punch cards for input/output

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 23

John Berry (Grad Student) With the
ABC Computer

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 24

What Happened to Atanasoff ?

• In 1940, asks for 5K from Iowa Research Council to
build a commercial-grade machine
– he’s turned down

• He meets John Mauchly
– physicist from U Penn

• But forgets to have him sign the NDA

• WWII starts
– By 1942, Atanasoff resigns from Iowa State to join the war

effort

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 25

The First “Killer” App

• Projectile
trajectories

• 5 days per trajectory
using a mechanical
calculator

• 30 minutes using
BDA

– not accurate
enough

– and still takes
one month/table

• John Mauchly
seized the
opportunity

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 26

The ENIAC

• Started in 1942

• Completed in 1945

• Key stats
– $500K

– 30 tons

– 1800 square feet

– 19000 vacuum tubes

– 175 Kw/power

– 5000 ops/second

• Followed 2 years later by
EDVAC.
– Stored Program

Electronic Numerical Integrator and Computer

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 27

IPs Leading to EDVAC

• IP #1: Application of Dynamic RAM at any cost (Vacuum tubes)
– Computers can now execute code against data

– Could now have a “PROGRAM” that could be loaded quickly and run.
• programs were loaded in their entirety into memory, and executed

– OS was just a library of code that you linked into your program

– By using the Hollerith Card (Old Technology Reapplied) (~1952) computers
can run a BATCH of programs

• Led to “Batch Processing Languages” which told OS about the programs

• OS loaded the next job into memory from the card reader
– job gets executed

– output is printed, including a dump of memory (why?)

– repeat…

• Problem:card readers and line printers were very slow
– so CPU (most $$ part of system) was idle much of the time (wastes $$)

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 28

1947-1952: The UNIVAC

• E&M’s first commercial computer

– used mag tape, courtesy of the
Nazis

• WWII was a Big Inflection Point

• $1M dev costs

– Sold to Census Bureau for $150K

• The company was undercapitalized
and needed cash to build

– No problem finding customers.

– They couldn’t deliver.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 29

The UNIVAC Invented Spooling

• IP#3: Tapes, which are faster than mechanical
readers and printers
– Spool (Simultaneous Peripheral Operation On-Line)

• while one job is executing, spool next job from card reader onto
tape

– slow card reader I/O is overlapped with CPU

• Problem: Tapes are sequential ! can only run the
“next” program.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 30

IBM Invents The Disk in 1956

 First computer disk storage system. The 305 RAMAC

(Random Access Method of Accounting and Control) could

store five million characters (five megabytes) of data on 50

disks, each 24 inches in diameter. RAMAC's revolutionary

recording head could go directly to any location on a disk

surface without reading the information in between. This IBM

innovation made it possible to use computers for airline

reservations, automated banking, medical diagnosis, and

space flights.

•IP#4: Disks, which allow Random Access to Storage

–Run multiple programs at “once” by swapping image to disk

•OS must choose which to run next when current ends, or performs I/O (eg,
fetch data from disk)

•job scheduling. EARLY POLICY/MECHANISM SEPARATION EXAMPLE

–Problem: CPU still idle during I/O

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 31

Multiprogramming by 1960

• IP#5: Big, Cheap Memory, to keep multiple programs in core at the
same time
– Again, to increase system utilization

– keeps multiple runnable jobs loaded in memory at once

– overlaps I/O of a job with computing of another
• while one job waits for I/O completion, OS runs instructions from another job

– to benefit, need asynchronous I/O devices
• need some way to know when devices are done

– interrupts

– polling

– goal: optimize system throughput
• perhaps at the cost of response time…

– Yielded the invention of the “PROCESS” – a program which is executing in
memory

• Problem: Computer is NOT interactive

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 32

Timesharing by the mid-60s

• IP#6: Even cheaper memory, modems, and inexpensive CRTs,
allowing multiple users to “interact” with the computer at the same time
– To support interactive use, create a timesharing OS:

• multiple terminals into one machine

• each user has illusion of entire machine to him/herself

• optimize response time, perhaps at the cost of throughput

– Timeslicing
• divide CPU equally among the users

• if job is truly interactive (e.g. editor), then can jump between programs and users
faster than users can generate load

• permits users to interactively view, edit, debug running programs (why does this
matter?)

– MIT Multics system (mid-1960’s) was the first large timeshared system
(based on the CTSS for the IBM 7094 from 1961)

• nearly all OS concepts can be traced back to Multics

• UNIX is just a simpler MULTICS
– Core of Mac OS X, Linux, etc.

• Problem: The computer ran faster at night

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 33

The Multics System

Last one decommisioned in 2000

1968: Honeywell 645 1975: Honeywell 6180

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 34

Personal and Distributed Computing by
the 1970s

• IP#7: Plummeting cost of silicon and networking allows everyone to
have their own computer

– Memory was under a penny/bit

– “Share everything but the time”

– distributed systems using geographically distributed resources

• workstations on a LAN

• servers across the Internet

– OS supports communications between jobs

• interprocess communication

• networking stacks

– OS supports sharing of distributed resources (hardware, software)

• load balancing, authentication and access control, …

– speedup isn’t the issue

• access to diversity of resources is goal

• Problem: there’s never a time that the machine runs faster

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 35

XEROX ALTO -- 1972

First personal workstation First wide deployment of:

•Bit-map graphics

•Mouse

•WYSIWG editing

Hosted the invention of:

•Local-area networking

•Laser printing

•All of modern client / server distributed computing

< $50K

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 36

Parallel Systems by the 80’s

• IP#8: High Speed Interconnects allow multiple processors to cooperate
on a single program

– Some applications can be written as multiple parallel threads or processes

– can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs

– need OS and language primitives for dividing program into multiple parallel
activities

– need OS primitives for fast communication between activities

• degree of speedup dictated by communication/computation ratio

– many flavors of parallel computers

• SMPs (symmetric multi-processors)

• MPPs (massively parallel processors)

• NOWs (networks of workstations)

• computational grid (SETI @home)

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 37

Internet by the 90s

• IP#9: WEB, HTTP, TCP at Scale
– TCP+HTTP+Web Browser has changed the way that the

world looks at computing

– BUT, there have been relatively few Operating System
Advances to support this

• The internet was functional by the 70s

– Mostly, it’s been a time of leveraging the last 50 years to
deploy MASSIVELY SCALABLE SYSTEMS

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 38

Ubiquitous Computing in the 21st Century

• IP#10: Massive miniaturization and integration of
computers + Wireless
– Ubiquitous computing

• cheap processors embedded everywhere and anywhere

• how many are on your body now? in your car?

• cell phones, PDAs, network computers, …

– Typically very constrained hardware resources

• (relatively) slow processors

• very small amount of memory (e.g. 8 MB)

• no disk

– OS researchers are working in this area today to understand
what we’ll be using tomorrow.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 39

Embedded OS

• Pervasive computing
– cheap processors embedded everywhere

– how many are on your body now? in your car?

– cell phones, PDAs, network computers, …

• Typically very constrained hardware resources
– slow processors

– very small amount of memory (e.g. 8 MB)

– no disk

– typically only one dedicated application

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 40

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 41

Multiple trends at work

• “Ontogeny recapitulates phylogeny”
– Ernst Haeckel (1834-1919)

• The evolution of any given OS tends to follow the evolution of
OS technologies in general.

• “Those who cannot remember the past are
condemned to repeat it”
– George Santayana (1863-1952)

• But new problems arise, and old problems re-define
themselves
– The evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

– But the ubiquity of PCs re-defined the issues in protection
and security

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 42

Protection and security as an example

• Protection is a very old OS concept
– PhD theses still collecting dust from the 60s and 70s.

• What have we learned to protect?
– OS & Devices from my program

• ~1960: User/Supervisor Mode

– Your program from my program
• ~1962: Atlas (Virtual Memory)

• ~1970: Multics

• ~1978: Unix

• ~1995: NT

– OS from OS
• ~1965: CP/370 & Virtual Machines

• ~1971: Hydra & Capabilities/Objects

• ~1985: Mach & Microkernels

• ~1995: NT & Microkernels

• ~2000: VMWARE & Virtual Machines

– access by intruding individuals
• ~1970: Multics

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 43

What are we not so good at (yet)?

• Unsolved, or poorly solved

– access by intruding programs

– denial of service

– distributed denial of service

– spoofing

– spam

– worms

– viruses

– stuff you download and run knowingly (bugs, trojan horses)

– stuff you download and run unknowingly (cookies, spyware)

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 44

Some Principles

1. It is a system
• Good analogies found in real life systems

2. Technology changes everything
• Look for the inflection points!

• Stemming from, or leading to, the “killer app”

• Generally, someone’s trying to MAKE money or SAVE
money by doing something differently

3. Priorities should not be mistaken for stupidity.
• Choose 2 of [Soon, Good, Cheap.]

4. Things often left for “later”
• Testability, Usability, Manageability, Security.

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 45

Rules - Continued

5. Code and Data are a matter of perspective.

6. MECHANISM and POLICY are generally separable

7. Simple solutions are generally better than complex ones.
• “Simple and good enough” almost always more attractive than optimal.

• Always consider the “Do nothing” option.

• Static solutions are generally simpler than dynamic ones

8. In general, the future is unknowable, except in retrospect
• It’s a good bet though that it looks like the past

9. Laziness in the presence of uncertainty is generally rewarded
• And punished in its absence

10. Often, all it takes is the the right level of indirection.

11. Space and time trade off

12. 2x rarely matters, 10x almost always does.

13. Scalability is hard, but rewarded in time.

14. Performance is easier than most other things

3/30/04 © 2004 Ed Lazowska & Hank Levy & Brian Bershad 46

CSE 451

• In this class we will learn:
– what are the major components of most OS’s?

– how are the components structured?

– what are the most important (common?) interfaces?

– what policies are typically used in an OS?

– what algorithms are used to implement policies?

• Philosophy
– you may not ever build an OS

– but as a computer scientist or computer engineer you need
to understand the foundations

– most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

