
1

CSE 451: Operating Systems
Autumn 2003

Lecture 9
Memory Management

Hank Levy
levy@cs.washington.edu

Allen Cent 596

11/10/03 © 2003 Hank Levy 2

Memory Management

• We’re beginning a new multiple-lecture topic
– goals of memory management

• convenient abstraction for programming

• isolation between processes

• allocate scarce memory resources between competing
processes, maximize performance (minimize overhead)

– mechanisms
• physical vs. virtual address spaces

• page table management, segmentation policies

• page replacement policies

11/10/03 © 2003 Hank Levy 3

Virtual Memory from 10,000 feet

• The basic abstraction that the OS provides for memory
management is virtual memory (VM)
– VM enables programs to execute without requiring their entire

address space to be resident in physical memory
• program can also execute on machines with less RAM than it “needs”

– many programs don’t need all of their code or data at once (or ever)
• e.g., branches they never take, or data they never read/write

• no need to allocate memory for it, OS should adjust amount allocated
based on its run-time behavior

– virtual memory isolates processes from each other
• one process cannot name addresses visible to others; each process

has its own isolated address space

• VM requires hardware and OS support
– MMU’s, TLB’s, page tables, …

11/10/03 © 2003 Hank Levy 4

In the beginning…

• First, there was batch programming
– programs used physical addresses directly
– OS loads job, runs it, unloads it

• Then came multiprogramming
– need multiple processes in memory at once

• to overlap I/O and computation

– memory requirements:
• protection: restrict which addresses processes can use, so they

can’t stomp on each other

• fast translation: memory lookups must be fast, in spite of
protection scheme

• fast context switching: when swap between jobs, updating
memory hardware (protection and translation) must be quick

11/10/03 © 2003 Hank Levy 5

Virtual Addresses

• To make it easier to manage memory of multiple
processes, make processes use virtual addresses
– virtual addresses are independent of location in physical

memory (RAM) that referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual addresses
• e.g., pointers, arguments to load/store instruction, PC, …

– virtual addresses are translated by hardware into physical
addresses (with some help from OS)

• The set of virtual addresses a process can reference
is its address space
– many different possible mechanisms for translating virtual

addresses to physical addresses
• we’ll take a historical walk through them, ending up with our

current techniques

11/10/03 © 2003 Hank Levy 6

Old technique #1: Fixed Partitions

• Physical memory is broken up into fixed partitions
– all partitions are equally sized, partitioning never changes
– hardware requirement: base register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

– how can we ensure protection?

• Advantages
– simple, ultra-fast context switch

• Problems
– internal fragmentation: memory in a partition not used by its

owning process isn’t available to other processes
– partition size problem: no one size is appropriate for all

processes
• fragmentation vs. fitting large programs in partition

2

11/10/03 © 2003 Hank Levy 7

Fixed Partitions (K bytes)

partition 0

partition 1

partition 2

partition 3

partition 4

partition 5

0

K

2K

3K

4K

5K

physical memory

offset +
virtual address

3K
base register

11/10/03 © 2003 Hank Levy 8

Old technique #2: Variable Partitions

• Obvious next step: physical memory is broken up into
variable-sized partitions
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for process
• (assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout
physical memory

11/10/03 © 2003 Hank Levy 9

Variable Partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base

base register

P3’s size

limit register

<?

raise
 protection fault

no

yes

11/10/03 © 2003 Hank Levy 10

Modern technique: Paging

• Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory

…

page 3

11/10/03 © 2003 Hank Levy 11

User’s Perspective

• Processes view memory as a contiguous address
space from bytes 0 through N
– virtual address space (VAS)

• In reality, virtual pages are scattered across physical
memory frames
– virtual-to-physical mapping
– this mapping is invisible to the program

• Protection is provided because a program cannot
reference memory outside of it’s VAS
– the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

11/10/03 © 2003 Hank Levy 12

Paging

• Translating virtual addresses
– a virtual address has two parts: virtual page number & offset
– virtual page number (VPN) is index into a page table

– page table entry contains page frame number (PFN)
– physical address is PFN::offset

• Page tables
– managed by the OS
– map virtual page number (VPN) to page frame number (PFN)

• VPN is simply an index into the page table

– one page table entry (PTE) per page in virtual address space
• i.e., one PTE per VPN

3

11/10/03 © 2003 Hank Levy 13

Paging

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

11/10/03 © 2003 Hank Levy 14

Paging example

• assume 32 bit addresses
– assume page size is 4KB (4096 bytes, or 212 bytes)
– VPN is 20 bits long (220 VPNs), offset is 12 bits long

• let’s translate virtual address 0x13325328

– VPN is 0x13325, and offset is 0x328

– assume page table entry 0x13325 contains value 0x03004
• page frame number is 0x03004

• VPN 0x13325 maps to PFN 0x03004

– physical address = PFN::offset = 0x03004328

11/10/03 © 2003 Hank Levy 15

Page Table Entries (PTEs)

• PTE’s control mapping
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the reference bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modify bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN << (#bits/page)

page frame numberprotMRV

202111

11/10/03 © 2003 Hank Levy 16

Paging Advantages

• Easy to allocate physical memory
– physical memory is allocated from free list of frames

• to allocate a frame, just remove it from its free list

– external fragmentation is not a problem!
• complication for kernel contiguous physical memory allocation

– many lists, each keeps track of free regions of particular size
– regions’ sizes are multiples of page sizes

– “buddy algorithm”

• Easy to “page out” chunks of programs
– all chunks are the same size (page size)
– use valid bit to detect references to “paged-out” pages

– also, page sizes are usually chosen to be convenient
multiples of disk block sizes

11/10/03 © 2003 Hank Levy 17

Paging Disadvantages

• Can still have internal fragmentation
– process may not use memory in exact multiples of pages

• Memory reference overhead
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB) – next class

• Memory required to hold page tables can be large
– need one PTE per page in virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– solution: page the page tables (!!!)
• (ow, my brain hurts…more later)

