Operating System Security

Mike Swift
CSE 451

Autumn 2003

Outline

Overarching goal: safe sharing
Authentication

Authorization

Reference Monitors
Confinement

Safe Sharing

+ Protecting a single computer with one user is easy
— Prevent everybody else from having access
— Encrypt all data with a key only one person knows
+ Sharing resources safely is hard
— Preventing some people from reading private data
(e.g. grades)
— Prevent some people from using too many
resources (e.g. disk space)
— Prevent some people from interfering with other
programs (e.g. inserting key strokes / modifying
displays)

Why is security hard?

Security slows things down

Security gets in the way

Security adds no value if there are no attacks

Only the government used to pay for security
— The Internet made us all potential victims

Trusted Computing Base (TCB)

+ Think carefully about what you are trusting with your information
— if you type your password on a keyboard, you're trusting:
« the keyboard manufacturer
- your computer manufacturer
- your operating system
« the password library
« the application that’s checking the password
— TCB = set of components (hardware, software, wetware)
that you trust your secrets with
+ Public web kiosks should *not* be in your TCB
— should your OS?
+ but what if it is promiscuous? (e.g., IE and active-X extensions)
— how about your compiler?
« A great read: “Reflections on Trusting Trust”.

Security Techniques

Authentication — identifying users and programs
Authorization — determining what access users and
programs have to things
— Complete mediation: check every access to every
protected object
Auditing — record what users and programs are doing
for later analysis

Authentication

» How does a computer know who | am?
— User name / password
+ How do it store the password?
+ How do it check the password?
+ How secure is a password?
— Public/Private Keys
— Biometrics
+ What does the computer do with this information?
— Assign you an identifier
+ Unix: 32 bit number stored in process structure

+ Windows NT: 27 byte number, stored in an access token
in kernel

Aside on Encryption

+ Encryption: takes a key and data and creates ciphertext
— {Attack at dawn}e,_ng s = 29vn	njs@a
+ Decryption: takes cipertext and a key and recovers data
— {29vn	njs@ajrey=h8ks! = Attack at dawn
— Without key, can’t convert data into ciphertext or vice-versa

+ Hashing: takes data and creates a fixed-size fingerprint, or hash
— H(Attack at Dawn) = 183870
— H(attack at dawn) = 465348

— Can't determine data from hash or find two pieces of data
with same hash

Storing passwords

+ CTSS (1962): password file

Bob: 14: <“12.14.52”
David: 15: “allison”
Mary: 16: “lofotc2n”

+ Unix (1974): encrypt passwords with passwords

Bob: 14: S6Uu0cYDVATAk
K=[01,11is0n David: 15: J2Z14ndBL6X.M

Mary: 16: VW2bqvTalBJKg
» Unix (1979): salted passwords

Bob: 14: S6Uu0cYDVdATAk: 45
K=[0]a11ison392 David: 15: J2ZI14ndBL6X.M: 392
Mary: 16: VW2bqvTalBJKg: 152

More Storing Passwords

+ Unix-style password file
— Password file not protected, because information
in it can’t be used to logon
— Doesn’t work for network authentication
+ Doesn’t contain any secret information

» Windows-NT style password file
— Contains MD4 hash of passwords
— Hash must be protected because it can be used to
log on
+ Hidden from users
+ Encrypted by random key
+ Physical security required

Password Security

+ 26 letters used, 7 letters long
— 8 billion passwords (33 bits)
— Checking 100,000/second breaks in 22 hours
+ System should make checking passwords slow

+ Adding symbols and numbers and longer passwords
— 95 characters, 14 characters long
— 1?7 passwords = 91 pijtg
— Checking 100,000/second breaks in 10 years

+ SDSC computed 207 billion hashes for 50 million
passwords in 80 minutes.
— Hashing all passwords for one salt takes 20 minutes on
a P4

Do longer passwords work?

+ People can’t remember 14-character strings of
random characters

+ Random number generators aren’t always that good.

» People write down difficult passwords

» People give out passwords to strangers

» Passwords can show up on disk

Authorization

» How does the system know what I'm allowed to do?
— Authorization matrix:
+ Objects = things that can be accessed

+ Subjects = things that can do the accessing (users or
programs)

— What are the limits?
+ Time of day
+ Ranges of values

Access Control Lists

» Representation used in Windows NT, Unix for files
+ Stored on each file / directory

Bob Read, Write,
Delete

Students Read

Everyone Read

Unix:
Fixed set of permissions (read,write,delete)
Three sets of subjects (owner, group, world)
Windows NT
Arbitrary number of entries
16 permissions per object

Alice Carl
letc Read Read
Write
/homes Read Read
Write Write
lusr None Read
Capabilities

» Once granted, can be used to get access to an object
» Implemented as a protected pointer

User 1| Usedin Unix, Wir}dows NT for files,
program 2| sockets, kernel objects
N 3] Capability obtained after ACL check
Kernel
Boundary
Capability
List

1123|456

Which one is better

+ ACLs:

— Can have large numbers of objects

— Easy to grant access to many objects at once

— Require expensive operation on every access
+ Capabilities

— Hard to manage huge number of capabilities

— They have to come from somewhere

— They are fast to use (just pointer dereferences)
+ Most systems use both

— ACLs for opening an object (e.g. fopen())

— Capabilities for performing operations (e.g. read())

Protection Domain Concept

+ A protection domain is the set of objects and permissions on
those objects that executing code may access
— e.g. aprocess
* memory
- files
+ sockets
— also: a device driver, a user, a single procedure
+ Capabilities:
— protection domain defined by what is in the capability list
+ ACLs
— protection domain defined by the complete set of objects
code could access

How does this get implemented?

+ Originally:

— every application had its own security checking code,
— Separate set of users

— Separate set of objects

— Separate kinds of ACLs, capabilities

+ This makes the trusted computing base) huge!!!

— You have to trust all applications do to this correctly!
Now: Reference monitor

— Manages identity

— Performs all access checks

— Small, well-tested piece of code

Modern security problems

+ Confinement
— How do | run code that | don’t trust?
+ E.g. RealPlayer, Flash
— How do | restrict the data it can communicate?
— What if trusted code has bugs?
« E.g. Internet Explorer
+ Concepts:
— Least Privilege: programs should only run with the minimal
amount of privilege necessary
+ Solutions:
— Restricted contexts - let the user divide their identity
— ActiveX — make code writer identify self
— Java — use a virtual machine that intercepts all calls
— Binary rewriting - modify the program to force it to be safe

Restricted Contexts

+ Add extra identity information to an a process

— e.g. both username and program name
(mikesw:navigator)

+ Use both identities for access checks
— Add extra security checks at system calls that use
program name
— Add extra ACLs on objects that grant/deny access
to the program
+ Allows user to sub-class themselves for less-trusted
programs

ActiveX

+ All code comes with a public-key signature
+ Code indicates what privileges it needs

» Web browser verifies certificate

» Once verified, code is completely trusted

)) Written by HackerNet
Signature / Certificate] Signed by VerifySign

Permissions

Let JavaScript call this

Code

Java

+ All problems are solved by a layer of indirection

— All code runs on a virtual machine

— Virtual machine tracks security permissions

— Allows fancier access control models - allows stack walking
+ JVM doesn’t work for other languages
+ Virtual machines can be used with all languages

— Run virtual machine for hardware

— Inspect stack to determine subject for access checks

Com.msft.sql-srv.query

Com.sun.jdbc-odbe.stmt

Java.jdbc.Statement

edu.washington.cse451

Binary Rewriting

+ Goal: enforce code safety by embedding checks in
the code

+ Solution:
— Compute a mask of accessible addresses
— Replace system calls with calls to special code

Original Code: Rewritten Code:

1w $a0, 14($s4) and $t6,$s4,0x001£££0
jal ($s5) 1w $a0, 14($t6)

move $al, $vO and $t6,$s5, O0x001fff0
jal $printf jal ($t6)

move $al, $vO
jal $sfi_printf

