Scheduling and Synchronization
Questions (15 min):

Scheduling(15-20 min):

This is a post-mortem rip off of Levy’s notes from last quarter. His outline is much better
than mine was.
Scheduling
* The scheduler is the module that moves jobs from queue to queue
— the scheduling algorithm determines which job(s) are chosen to run next, and
which queues they should wait on
— the scheduler is typically run when:
- a job switches from running to waiting
« when an interrupt occurs
- especially a timer interrupt
- when a job is created or terminated
* There are two major classes of scheduling systems
— in preemptive systems, the scheduler can interrupt a job and force a context switch
- in non-preemptive systems, the scheduler waits for the running job to explicitly
(voluntarily) block
Scheduling Goals
* Scheduling algorithms can have many different goals (which sometimes conflict)
- maximize CPU utilization
— maximize job throughput (#jobs/s)
— minimize job turnaround time (Tfinish — Tstart)
— minimize job waiting time (Avg(Tait): average time spent on wait queue)
— minimize response time (Avg(Ty.p): average time spent on ready queue)
* Goals may depend on type of system
— batch system: strive to maximize job throughput and minimize turnaround time
- interactive systems: minimize response time of interactive jobs (such as editors or
web browsers)
Scheduler Non-goals
* Schedulers typically try to prevent starvation
— starvation occurs when a process is prevented from making progress, because
another process has a resource it needs
* A poor scheduling policy can cause starvation
- e.g., if a high-priority process always prevents a low-priority process from running
on the CPU
* Synchronization can also cause starvation
— we’ll see this in a future class
- roughly, if somebody else always gets a lock I need, I can’t make progress
Algorithm #1: FCFS/FIFO
* First-come first-served (FCFS)
— jobs are scheduled in the order that they arrive
- “real-world” scheduling of people in lines
- e.g. supermarket, bank tellers, MacDonalds, ...



— typically non-preemptive
+ no context switching at supermarket!
— jobs treated equally, no starvation
- except possibly for infinitely long jobs
* Problems:
— average response time and turnaround time can be large
- e.g., small jobs waiting behind long ones
- results in high turnaround time
- may lead to poor overlap of I/O and CPU
Algorithm #2: SJF
» Shortest job first (SJF)
— choose the job with the smallest expected CPU burst
— can prove that this has optimal min. average waiting time
* Can be preemptive or non-preemptive
— preemptive is called shortest remaining time first (SRTF)
* Problem: impossible to know size of future CPU burst
- from your theory class, equivalent to the halting problem
- can you make a reasonable guess?
- yes, for instance looking at past as predictor of future
- but, might lead to starvation in some cases!

Algorithm #3: Priority Scheduling
» Assign priorities to jobs
— choose job with highest priority to run next
- if tie, use another scheduling algorithm to break (e.g. FCFS)
- to implement SJF, priority = expected length of CPU burst
* Abstractly modeled as multiple “priority queues”
— put ready job on queue associated with its priority
* The problem: starvation
— if there is an endless supply of high priority jobs, no low-priority job will ever run
* Solution: “age” processes over time
— increase priority as a function of wait time
— decrease priority as a function of CPU time
— many ugly heuristics have been explored in this space
Algorithm #4: Round Robin
* Round Robin scheduling (RR)
— ready queue is treated as a circular FIFO queue
— each job is given a time slice, called a quantum
- job executes for duration of quantum, or until it blocks
- time-division multiplexing (time-slicing)
— great for timesharing
+ no starvation
« can be preemptive or non-preemptive
* Problems:
— what do you set the quantum to be?
+ no setting is “correct”



- if small, then context switch often, incurring high overhead
- if large, then response time drops
— treats all jobs equally
- if I run 100 copies of SETI@home, it degrades your service
+ how can I fix this?

Synchronization example (15-20 min):
Problem 7.8 from Silberschatz, Galvin, and Gagne:

We have one counted semaphore, barber shop, with its count initialized to the
number of chairs in the barber shop. There are 3 binary semaphores, mutex,
barber snooze,and hair done. mutex is initially unlocked, and the other two
are initially locked. The shared variables are the boolean barber asleep, which is
initially false, and the integer chairs full, which is initially 0.

barber () {
while (1) {

P (mutex)

if (chairs full==0) {
//sleep
barber asleep=true
V (mutex)
P (barber snooze)
P (mutex)
barber asleep=false

} else {

// cut someones hair
V(hair done)
}
V (mutex)
}
}

client () {

// enter barber shop

P (barber shop)

P (mutex)

if (barber asleep) {
V (barber snooze)

}

//sit in chair

chairs full++

V (mutex)

P (hair done)

P (mutex)

//get up and leave



chairs full--
V (mutex)
V (barber shop)



