
Processes and Threads – Distinctions and Motivations Behind Each

Questions
• Answering student questions

Reflections on the project
• What was the most difficult aspect of the project?

o Finding where things are in the kernel? Making the changes? Getting it to finally work? Others?
• How did you find the Linux code structure? Easy to understand? Not so easy? Was it well

componentized?
• Was the midnight turn-in time better than the 8:30am time just before lectures?

Processes vs. threads
• What are the main differences? (I was once asked this in a job interview.)

o A thread (inside a given process) is uniquely defined by a stack, a program counter (PC), and a set
of registers.

o All threads in a process share the same code, heap, and static variable segments.
• What is lightweight about threads?

o Switching between them doesn't require cache and TLB flushing, both of which are expensive
operations taking the majority of the switching time.
! A (process) context switching takes roughly ~1µs on modern machines.
! It is an overhead that must be minimized / amortized across useful computations
! Context shouldn't be switched too often, but the need for sharing and better resource utilization

requires it (> 10,000 switches/sec)
o Then why not have only threads and abandon process isolation?
! There are legitimate reasons to isolate processes from one another.

• E.g.: They don't need to (or, should not) share any data.
• Which of these applications are multithreaded and which are single-threaded? What motivates this?

o Web servers
o Web clients / browsers
o Microsoft Word
o Java Virtual Machine
o your command interpreter
o other applications

Communication models
• Shared memory – fast on the same machine (avoids kernel boundary crossings), but applications need

to ensure protection and synchronization themselves (can’t rely on the kernel)
• Message passing – for infrequent exchanges, communication across machines
• Where do threads fit?

o They share memory and need to be protected from other threads.

The Java protection model
• Motivation behind it

o All code lives in a single address space (with the virtual machine) in order to enable efficient
sharing
! ... between downloaded (mobile) code and local code
! What is virtual about the Java Virtual Machine (JVM)?

o Language-based (fine-grained) protection of resources at a level above that which the OS provides
! There's more to it than type safety - it's a complex mechanism, similar to but less sophisticated

than that in .NET.

Quiz Question
• How can one programmatically determine which way the stack grows – up or down? (Yet another job

interview question.)

Other (stack-related) questions
• Does it make sense to more efficiently allocate the memory for thread stacks when there are multiple

threads? What would the cost be?
o Principle: “Make common case fast, and the uncommon case correct.”
! Also applies for the issue of threads vs. processes (if sharing is essential and common)

