CSE 451: Operating Systems
Spring 2003

Lecture 3
C and stack smashing
Steve Gribble

gribble@cs.washington.edu
323B Sieg Hall

Today’'s agenda

¢ Administrivia

— office hours
« Doug: Thursday at 11am in the TA offices (226a)
« Valentin: Friday at 2pm, in 232

« A few last C brain teasers

« Exploiting your knowledge of C's weaknesses
— broad strokes of buffer overrun vulnerabilities

4/6/2003 ©2003 Steve Gribble:

Brain teasers...

4/6/2003 ©2003 Steve Gribble:

#2: spot the bug

typedef struct Il_st {
struct Il_st *next;
int val ue;
} linked_list_elenent;

void free_linked_list(linked_|ist_elenent *head) {

free(head);
free_linked_|ist(head- >next);

40612003 ©2003 Steve Grvble 4

#3: spot the bug

typedef struct {
char test_string[5];
} enbedded_string;

char *extract_string(enbedded_string extract_fromne) {
return extract_fromme.test_string;

}

void main() {
char *x;
enbedded_string y;

X = extract_string(y);
strepy(x, “hi!");

#4. predict the output
#incl ude <stdio. h>

voi d mai n(void) {
char input[256];

gets(input);
printf (“User inputted: ‘%' \n", input);

return;

4/6/2003 ©2003 Steve Gribble: 6

#5: spot the bugs

void foo(int print, int value) {
char *string;

string = (char *) nalloc(10*sizeof (char));

if (input > 1) {
sprintf (string, “value: %", value);
printf(string);
free(string);

}

return;

}

40612003 ©2003 Steve Grvble .

#6: spot the bug (subtle) 5

52

unsi gned short x, *x_ptr; 48

. . 44
unsi gned int y;

unsi gned char *c_ptr; 40

36

/1 assign sone val ues 2

y = 0; x=0xFFFF;

28

/I point x_ptr into the “middle” of y 2

c_ptr = (char *) (&); 20

x_ptr = (unsigned short *) (c_ptr+1); 16

*y_ptr = x; 12

8

4

4/6/2003 ©2003 Steve Gribble:

Buffer overrun vulnerabilities and C

Examples and structure taken from “Smashing the stack
for fun and profit”, by Aleph One

4/6/2003 ©2003 Steve Gribble:

Memory Organization

* UNIX programs make use of three
memory regions

— heap
« malloc’ed memory

— text
« code and static variables

— stack
« local variables

byte2%.1

stack

Stack frames

« By convention, the stack is organized
into a set of stack frames
— every time you call a procedure, you add
a frame to the “top” of the stack

« remember, stacks grow downwards on
x86/Linux, so the “top” of the stack grows
down towards the bottom of memory

— a stack frame has to keep track of a
number of things:

the arguments passed in to the procedure

the local variables used in the procedure

the return address to return to afterwards

the address of the previous stack frame
to unwind the stack to

1

Tocars,

fp

Tocars,

fp

byte2%-1

A specific example

sp ¥

void func(int a, int b) {
char buffer1[8];

buffer2

char buffer2[12];

buffer]

void bar() {

int x=1; SFP "l sip(bar)

func(1/

ret

X+t <

b

a

4/6/2003 ©2003 Steve Gribble:

Buffer overruns

void function(char *str) {
char buffer[16];
strcpy(buffer,str);
}
buffer
void main() {
char |arge_string[256];
int i;
fp(main)
large_string[255] = ‘\0'; £t
for(i =0; i < 255; i++) St
large_string[i] ="A;
function(large_string);
}
40612003 ©2003 Steve Grbble 13

Key insight

* We were able to change the return address by
overflowing a buffer

— many programs have buffer overrun vulnerabilities because
of poor coding techniques:

char *x;
char header[30];

x = read_www_r equest _from network();
strcpy(header, x);

— why not exploit this vulnerability by changing the return
address to something, er, “creative”?

41612003 ©2003 Steve Grible 14

Controlled damage

» Overrun buffer to accomplish ‘l
two things:

— embedded carefully constructed
code in the buffer (and therefore in
the stack) buffer

« execute a shell
* mail /etc/passwd somewhere

(113ys)oaxa

sfp(main)
ret

— overwrite return address to divert
the program to your code
« difficult: figuring out what address
to stuff in there
« need to know where (precisely) the
buffer is in memory

*str

41612003 ©2003 Steve Gribble 15

The remaining pieces

« constructing a buffer that is valid code
— write a program to execve (“/bin/sh”)
+ use gdb to disassemble
« construct string using disassembly

« execve() has a pointer to a string as argument
— you are writing code that you are “inserting” in another program
— the code you are writing doesn’t know where it will live in thatother
program

— your code needs to figure out where itself lives once it gets there,
so it can pass the right address of the string “/binsh” as an
argument

« you need to figure out where the buffer you are overflowing lives
— so that you can overwrite the return address to point to the buffer

41612003 ©2003 Steve Grbble 16

Buffer overruns: huge problem for Internet

« buffer overruns are exploited heavily
— worms (SQL slammer, Morris worm, etc.)
— distributed denial of service attack zombie recruit tools
— hackers attempting to bust specific machines

« buffer overruns are 50% of reported vulnerabilities

« buffer overruns exist in many widely deployed
software packages
— including sendmail, which runs on most Unix systems

41612003 ©2003 Steve Grible 17

Combating buffer overruns

« Better languages
— eliminate buffer overruns altogether [Java]
— doesn't deal with legacy code

« Tools to inspect legacy code
— easy to find some bugs (‘grep gets *.c”)
— hard to find all bugs this way, because C is so messy

« Operating system or architecture support
— randomize stack placement in programs
— make the stack non-executable

41612003 ©2003 Steve Gribble 18

