
1

CSE 451: Operating Systems
Spring 2003

Lecture 3
C and stack smashing

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

4/6/2003 © 2003 Steve Gribble 2

Today’s agenda

• Administrivia
– office hours

• Doug: Thursday at 11am in the TA offices (226a)
• Valentin: Friday at 2pm, in 232

• A few last C brain teasers
• Exploiting your knowledge of C’s weaknesses

– broad strokes of buffer overrun vulnerabilities

4/6/2003 © 2003 Steve Gribble 3

Brain teasers…

2

4/6/2003 © 2003 Steve Gribble 4

#2: spot the bug

typedef struct ll_st {
struct ll_st *next;
int value;

} linked_list_element;

...

void free_linked_list(linked_list_element *head) {

free(head);
free_linked_list(head->next);

}

...

#3: spot the bug
typedef struct {

char test_string[5];
} embedded_string;

char *extract_string(embedded_string extract_from_me) {
return extract_from_me.test_string;

}

void main() {
char *x;
embedded_string y;

…
x = extract_string(y);
strcpy(x, “hi!”);
…

}

4/6/2003 © 2003 Steve Gribble 6

#4: predict the output

#include <stdio.h>

void main(void) {
char input[256];

gets(input);
printf(“User inputted: ‘%s’\n”, input);

return;
}

3

4/6/2003 © 2003 Steve Gribble 7

#5: spot the bugs

void foo(int print, int value) {
char *string;

string = (char *) malloc(10*sizeof(char));

if (input > 1) {
sprintf(string, “value: %d”, value);
printf(string);
free(string);

}

return;
}

4/6/2003 © 2003 Steve Gribble 8

#6: spot the bug (subtle)

unsigned short x, *x_ptr;
unsigned int y;
unsigned char *c_ptr;

// assign some values
y = 0; x=0xFFFF;

// point x_ptr into the “middle” of y
c_ptr = (char *) (&y);
x_ptr = (unsigned short *) (c_ptr+1);
*y_ptr = x;

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

4/6/2003 © 2003 Steve Gribble 9

Buffer overrun vulnerabilities and C

Examples and structure taken from “Smashing the stack
for fun and profit”, by Aleph One

4

Memory Organization

• UNIX programs make use of three
memory regions

– heap
• malloc’ed memory

– text
• code and static variables

– stack
• local variables

text

heap

stack

byte 0

byte 2 32 - 1

Stack frames

• By convention, the stack is organized
into a set of stack frames
– every time you call a procedure, you add

a frame to the “top” of the stack
• remember, stacks grow downwards on

x86/Linux, so the “top” of the stack grows
down towards the bottom of memory

– a stack frame has to keep track of a
number of things:

• the arguments passed in to the procedure
• the local variables used in the procedure
• the return address to return to afterwards

• the address of the previous stack frame
to unwind the stack to

arguments

ret

sfp

locals

arguments

ret

sfp

locals

byte 0

byte 2 32 - 1

4/6/2003 © 2003 Steve Gribble 12

A specific example

void func(int a, int b) {
char buffer1[8];
char buffer2[12];

}

void bar() {
int x=1;

func(1,2);
x++;

}
a

b

ret

sfp(bar)

buffer1

buffer2

x

spf(..)

SP

SFP

5

4/6/2003 © 2003 Steve Gribble 13

Buffer overruns

void function(char *str) {
char buffer[16];

strcpy(buffer,str);
}

void main() {
char large_string[256];
int i;

large_string[255] = ‘\0’;
for(i = 0; i < 255; i++)
large_string[i] = 'A';

function(large_string);
}

*str

ret

sfp(main)

buffer

4/6/2003 © 2003 Steve Gribble 14

Key insight

• We were able to change the return address by
overflowing a buffer
– many programs have buffer overrun vulnerabilities because

of poor coding techniques:

char *x;
char header[30];

x = read_www_request_from_network();
strcpy(header, x);

– why not exploit this vulnerability by changing the return
address to something, er, “creative”?

4/6/2003 © 2003 Steve Gribble 15

Controlled damage

• Overrun buffer to accomplish
two things:

– embedded carefully constructed
code in the buffer (and therefore in
the stack)

• execute a shell
• mail /etc/passwd somewhere

– overwrite return address to divert
the program to your code

• difficult: figuring out what address
to stuff in there

• need to know where (precisely) the
buffer is in memory

*str

ret

sfp(main)

buffer

exec(shell)

6

4/6/2003 © 2003 Steve Gribble 16

The remaining pieces

• constructing a buffer that is valid code
– write a program to execve(“/bin/sh”)

• use gdb to disassemble
• construct string using disassembly

• execve() has a pointer to a string as argument
– you are writing code that you are “inserting” in another program
– the code you are writing doesn’t know where it will live in that other

program
– your code needs to figure out where itself lives once it gets th ere,

so it can pass the right address of the string “/bin/sh” as an
argument

• you need to figure out where the buffer you are overflowing lives
– so that you can overwrite the return address to point to the buffer

4/6/2003 © 2003 Steve Gribble 17

Buffer overruns: huge problem for Internet

• buffer overruns are exploited heavily
– worms (SQL slammer, Morris worm, etc.)
– distributed denial of service attack zombie recruit tools
– hackers attempting to bust specific machines

• buffer overruns are 50% of reported vulnerabilities

• buffer overruns exist in many widely deployed
software packages
– including sendmail, which runs on most Unix systems

4/6/2003 © 2003 Steve Gribble 18

Combating buffer overruns

• Better languages
– eliminate buffer overruns altogether [Java]
– doesn’t deal with legacy code

• Tools to inspect legacy code
– easy to find some bugs (“grep gets *.c”)
– hard to find all bugs this way, because C is so messy

• Operating system or architecture support
– randomize stack placement in programs
– make the stack non-executable

