CSE 451: Operating Systems
Spring 2003

Lecture 2
C and Pointers

Steve Gribble
gribble@cs.washington.edu
323B Sieg Hall

Today’s agenda

e Administrivia
— programming assignment

» get started early...
e tomorrow’s lab sections are a good opportunity to get help

— office hours
* Doug: Thursday at 11am in the TA offices (226a)
* Valentin: Friday at 2pm, in 232

e Continuing through the trickier aspects of C

4/2/2003 © 2003 Steve Gribble

Typecasting

A mistake from last time:

I nt x = 0x87654321;
char v;

y = (char) x; printf(“%\n”, (int) y);

e ANSI C defines:

— If converting an integer to a signed type, the result is
Implementation-defined if the value cannot be represented in
the new type

— If converting an integer to an unsigned type, a complicated
rule basically gives left-truncation of the bits

— regardless, don’t do this...!

4/2/2003 © 2003 Steve Gribble 3

Memory management in Java

e the Java runtime manages memory on your behalf

— you never allocate memory directly
* instead, you instantiate objects using “new”

String x = new String(“hello world”);
— the garbage collector frees memory for you

 figures out when an object can be reclaimed (i.e., no more
references exist to that object)

4/2/2003 © 2003 Steve Gribble

Memory management in C

e Ssome memory is managed on your behalf

— the instructions which implement your functions
« compiler, linker, and OS collude to allocate memory for this

— the memory that backs global and “static” variables
» compiler, linker, and OS collude to allocate memory for this

— the memory that backs local variables within functions
« compiler allocates this out of the “stack” when function is called
» compiler frees this from the stack when function exits

4/2/2003 © 2003 Steve Gribble

Memory management in C

* Yyou need to Manage some memaory on your own

— allocate memory to hold your data structures
* hash tables, linked lists, ...etc.
 allocated out of the “heap”
— you must free this memory when you are done with it!

 this is hard: elaborate bookkeeping to keep track of what
memory you have allocated and when it is safe to free

char *x; /|l a pointer — we’ll cover this soon

X = (char *) malloc(12); // allocate 12 bytes
I f (x == NULL) exit(-1); [// out of nenory?
free(x); /'l free the all ocated nenory

4/2/2003 © 2003 Steve Gribble 6

byte 232 - 1

Memory
y e memory is an array of bytes
stac — potential addresses from 0 to 2N-1
¢ — for Intel x86, N=32 (32-bit architecture)
e each Unix program uses three memory zones
T — the heap
 things you allocate with malloc
heap — the stack

» local variables within functions, and other
bookkeeping in “stack frames”

code « done automatically for you
— the ‘text segment’

» code, global and static variables

* OS sets this up for you when program is loaded
— “linker” provides the loader a recipe to fill in values

byte O

4/2/2003 © 2003 Steve Gribble 7

Pointers

e a pointer contains a memory address
— a pointer “points” to a location in memory

unsi gned short X;
unsi gned short *y;
unsi gned short **z;

X = 1;
= 4
z = 0;

4/2/2003

*y = 100; y++;
**z = 101; z++;

© 2003 Steve Gribble

56
52

48
44

40
36

32
28
24
20
16
12

A brain-teaser: what gets printed out?

unsi gned char *p; .0
unsi gned char y = Ox4E; .
p = (unsigned char *) 0x00000002; 32
*p = 0x05; -
*(p + 1) = 0x11; .y
*(p - 1) = Ox3F N
(p - 2) =y, N
printf(“%®8x\ n”, (unsigned int) *(p-2)); 12
8

printf(“%8x\n”, 4
*((unsigned int *) (p-2))); 0

Strings: arrays of characters

e Strings in C are just NULL-terminated arrays of chars

char *ny _string = “H!";
char another _string[4] = {'H, “i’, “'", ‘“\0"};
char *final _string;

final _string = (char *) malloc(4*sizeof(char));
I f (final _string == NULL) exit(-1);

final _string[0] = ‘H;

final _string[1] = ‘i’ ;

final _string[2] = ‘!";

final _string[3] = ‘\0";

printf(“% % %\n”, ny_string, another _string,
final _string);

4/2/2003 © 2003 Steve Gribble 10

Pointers and addresses

e & ="“address of”

i nt main(void) {
I nt x=1, *z;

z = &X;
printf(“% %8x %®©8x\n”, *z, z, &z);

z = (int *)
mal | oc(2 * sizeof (int));
*z = 100;
*(z+1) = 101;
*(z+2) = 102; /'l whoops!

return O; /] same as exit(0)

4/2/2003 © 2003 Steve Gribble

56
52

48
44

40
36

32
28
24
20
16
12

11

4/2/2003

Brain teasers...

© 2003 Steve Gribble

12

#1: predict the printout

#i ncl ude <stdi o. h>
voi d mai n(voi d) {
int i =6, | = 3;
*(int *) ((i) ?2 & @ &) = 2

printf("%", i+));

4/2/2003 © 2003 Steve Gribble

13

#2: spot the bug

typedef struct |l _st {
struct |l _st *next;
| nt val ue;

} linked |Iist el enent;

void free linked list(linked |list_elenent *head) {

free(head);
free_linked_Ilist(head->next);

4/2/2003 © 2003 Steve Gribble 14

#3: spot the bug

t ypedef struct {
char test _string[5];
} enmbedded_stri ng;

char *extract _string(enbedded string extract fromne) {
return extract _fromnme.test _string;

}

void main() {
char *Xx;
enbedded _string vy;

X = extract_string(y):;
*x = “hil”;

#4: predict the output

#i ncl ude <stdi o. h>

voi d mai n(void) {
char 1 nput|[256];

get s(i nput);
printf(“User inputted:

return;

‘o8’ \n”,

4/2/2003 © 2003 Steve Gribble

| nput) ;

16

#5: spot the bugs

void foo(int print, int value) {
char *string;

string = (char *) nmalloc(10*si zeof (char));

1 f (input > 1) {
sprintf(string, “value: %", value);
printf(string);
free(string);

}

return;

}

4/2/2003 © 2003 Steve Gribble

#6: spot the bug (subtle)

unsi gned short x, *x_ptr;
unsi gned i nt Y;
unsi gned char *c_ptr;

/| assign sone val ues
y = 0; Xx=0xFFFF;

[/ point x ptr into the “mddle” of y
C_ptr = (char *) (&y);

X_ptr = (unsigned short *) (c_ptr+1);
*y ptr = Xx;

4/2/2003 © 2003 Steve Gribble

52

48
44

40
36

32
28
24
20
16
12

18

