
1

CSE 451
Autumn 2003

November 13 Section

Questions from Lecture?

Questions from the Project? Questions from the Exam?

Questions from Homework?
• 9.11: what is the effect of have two entries in a

page table point at the same physical page
– not two entries in two page tables

• Aliasing
– Same memory shows up twice
– Changing a byte in one view changes the other

• Copying
– Can implement copy by just remapping
– Need to make both copies read-only, do copy when one

changes to get copy semantics

Memory Protection

• 9.9: How do operating systems prevent processes
from seeing other memory?
– Common answer: valid/invalid bit
– Correct answer:

• Every address a process uses is translated by the page table
• A process has no language to talk about memory other than its

own
– How can we implement this?

• Share a physical page between two PTEs
• Provide a system call to read/write memory in other processes

2

Project 3 - Virtual Memory

• Experiments
– Have a hypothesis

• “Big pages are better”
• “Algorithm y is better”
• “Prefetching will reduce the number of page faults”
• “If we understand why x happens, we can fix it”

Running experiments

• Two steps
– Control: what is the baseline?

• What happens with existing page sizes / page
replacement algorithms / no prefeching

– New test: what happens with the new system
• Try to change just one aspect of the system to isolate

the difference

Some ideas
• What is the ideal page size for this trace under

different amount of main memory?
• How much better is page replacement algorithm x

then LRU
– e.g. 2Q, ARC (currently best known techniques)

• How close can we come to LRU without doing
any work between page faults?
– e.g. no scanning, constant work per page fault

• How important is recency vs. frequency in
predicting page re-use?

No so good ideas

• What kind of music is made when I set the
convert the address trace to notes?

• Can I make a fractal out of this data?

Today’s Topic: Optional

• Memory Management in Linux

• High level:
– 3 level page tables
– common kernel heap allocator (“kmalloc”,

“slab”)
– Virtual memory areas
– Physical memory regions

Page Tables

• PGD = top level pointer
– Points to a page of PMDs (page middle directory)

• PMD = middle level
– Can have just one entry for two-level hardware
– Points to a page of PTEs

• PTE = page table
– Translates a single virtual page into a physical page

3

Page Frame Database
• struct page {

address_space * mapping;
 unsigned long index; // offset in mapping
 struct page * next_hash;
 struct page * prev_hash;
 unsigned long flags;
 atomic_t count; // usage count
 struct list_head lru; // pageout list
 void * virtual; // virtual address of this

page in kernel memory map
 struct buffer_head * buffers;
}

Page Flags
PG_locked
PC_error
PG_referenced
PG_uptodate
PG_dirty
PG_unused
PG_lru
PG_active
PG_slab
PG_highmem
PG_checked
…

Physical Memory Zones

• ZONE_DMA - used for DMA to antique
devices, < 16 MB

• ZONE_NORMAL: 16-896 MB
• ZONE_HIGHMEM: > 896 MB

Linux Memory Picture

Zero
0-64k

User
64k-3gb

Physical
Memory

DMA

Physical
Memory
Normal

Kernel
Virtual

Memory

Direct mapped:
physical = virtual - 0xc0000000

Virtually mapped:
physical = pte(virtual)

Page Replacement

• Triggered by low memory during allocation
• kswapd daemon also triggers swapping

– wakes up every second when few pages
available

• try_to_free_pages() finds pages to
release (many)
– walks through each memory type and asks it to

release some pages

Page replacement (2)

• Two lists of memory
– active pages: currently actively in use
– inactive pages: candidates for swapping

• Pages are moved from active to inactive
using clock algorithm
– active list scanned for non-referenced pages
– unused pages put on inactive list

4

Page replacement (3)

• Inactive list scanned for pages to swap out
– Put pages that have been referenced back on

active list
– Leave behind pages locked for I/O
– Try to free buffers in buffer cache using the

page
• Keep swapping out pages until enough have

been freed

Issues

• How do you check reference bits on shared
pages?

• What happens if the swapper needs to
allocate memory?

• What happens if part of the swapper code is
swapped out?

Slab Allocator

• Goal:
– Locality
– Fast
– Keep similar types together

• Can create a heap for a specific type
– Non-blocking synchronization

• Uses atomic instructions instead of locks

Slab Allocator Design

• struct page knows what cache holds memory
– Makes free easy - no need to specify/locate cache

• Heaps allocate from chunks called “slabs”
– 3 types:

• fully used - not used for allocation
• partially used - used first
• empty - reserved until no partially full

– Can span multiple page sizes
• optimized to reduce wastage

Page allocator
• Used for requesting contiguous chunks of physical

memory
– Can specify zone (DMA, normal, highmem)
– Only allocates powers of 2 pages
– Used for I/O - need contigous physical memory or for

single pages
• Uses buddy allocator

– coalesces adjacent pages into powers of 2
• Triggers swapper when memory runs low

– Can wait until memory is available

Virtual Memory Areas

• Used when contiguous virtual address is
needed
– e.g. allocating memory for dynamically loaded

kernel code
• Kernel maintains sorted linked-list of areas

in use
– traverses list to find free space
– allocate PMT/PTE/pages for the space

5

Page Fault Handler
• in arch/i386/mm/fault.c: do_page_fault()

– Looks up faulting address in virtual memory area list to see what
kind of memory it is

• Checks common fault cases:
– usermode/kernel mode
– write protect / invalid
– stack growth
– lazy synchronization of page table

• Resolutions:
– call handle_mm_fault
– send SIGSEGV
– panic()

