
1

CSE 451
Autumn 2003

Section 3
October 16

Questions from lecture

• Threads vs. processes?
• Kernel vs. user threads?

Homeworks

• Context Switches
• Threads vs. processes

Threads in the real world

• Linux:
– Kernel only knows about processes (called tasks)
– Threads are implemented by allowing portions of a

process to be shared
– Clone() system call implements fork with varying

degrees of sharing
• Nothing
• Address space
• Address space plus file descriptors

– Implementation:???

Windows

• Full kernel thread support
• Process has no context information
• Thread has no resource information
• Process points to list of threads, threads

point to containing process
• Scheduler only looks at threads
• Why the difference?

Who uses threads?

• Web servers
• Databases
• Web browsers
• Scientific programs
• Word processors

2

Project questions?

• You will implement threads
• You will implement mutexes and condition

variables

Simple Threads
• sthread_new_ctx

– creates a new thread context that can be switched to
• calls the supplied function with no parameters

• sthread_fee_ctx
– Deletes the supplied context

• sthread_switch:
– saves current context
– switches to supplied context

• sthread_queue.h: generic queue implementation:
when do you need a queue?

Threads

• Hints:
– Handling the initial thread

• hint: you don’t need context information for a thread
while it is running - only when it is waiting to run

– Starting up a thread
• The supplied routine for creating a thread

(sthread_new_ctx) doesn’t pass parameters to the
function it runs

• How do you pass parameters to a function with no
arguments?

Mutexes
• Simple locks that prevent two threads from

executing
• Usage:

– sthread_user_mutex_init() to initialize
– sthread_user_mutex_lock()

• Only one thread can do this at a time
– sthread_user_mutex_unlock()

• Lets another thread continue past lock
– sthread_user_mutex_free()

• Frees lock (can’t be any waiters)

Mutex Example
int I = 0;

void update()

{

 sthread_mutex_lock(mtx);

i++;

sthread_mutex_unlock(mtx);

}

Condition variables
• Used to signal another thread that a condition is

true
• Usage:

– c = sthread_user_cond_init() to initialize
– sthread_user_cond_free(c) to free
– sthread_user_cond_wait(c,mtx)

• Waits until signal
• unlocks mtx before waiting
• locks mtx before returning

– sthread_user_cond_signal(c)
• Wakes up one waiter

– sthread_user_cond_broadcast(c)
• Wakes up all users

3

Condition Variable Example
sthread_mutex_lock(mtx);

while (empty(buffer)) {

sthread_cond_wait(c, mtx);

}

process_buffer(buffer);

sthread_mutex_unlock(mtx);

sthread_mutex_lock(mtx);

buffer[i++]= x

sthread_cond_signal(c);

sthread_mutex_unlock(mtx);

How are threads used?

• Thread-per-pipeline stage
• Thread-per-request
• Thread pools

Thread pools

• Save on cost of creating threads
• Limits number of threads (you see how

many are useful)

Thread pool pattern

• One thread accepts requests, puts them in a
queue

• Pool threads wait on queue
– When triggered, wake up and do work
– Else sleep

• Can dynamically grow/shrink

