
CSE451 Spring 2002 Practice Final Solutions

Question 1

Implement counting semaphores using mutexes and mesa-style condition variables.

struct semaphore {

int count;

mutex lock;

cv incr;

}

P(semaphore s) {

s.lock.acquire();

while s.count <= 0

s.incr.wait(s.lock);

s.count--;

s.lock.release();

}

V(semaphore s) {

s.lock.acquire();

s.count++;

s.incr.signal();

s.lock.release();

}

Question 2

With 1KB file system blocks and 4 byte block pointers, what is the maximum file size on a UFS-like
system with 12 direct blocks, 1 single-indirect block, and 1 double-indirect block?

1024 ∗ (12 + 256 + 2562)

Question 3

Why have we not discussed RAM access scheduling (as we have disk head scheduling)?

RAM is random access; there is no benefit to reordering requests.



Question 4

L1-cache block size: 32 bytes (25)
L1-cache access time: 1ns
L1-cache size: 1024 bytes (210)
Page size: 4096 bytes (212)
RAM access time: 10ns
Memory size: 8192 bytes (213)
Disk access time: 10ms

Thee L1-cache is fully-associative and uses a random replacement policy. The pager is LRU. What
is the effective access time for an application walking through an array of size 16384
(214 )bytes (it accesses every 4-byte word)? Assume the application is looping through the
array and has been running for a long time.

Begin with the general cache access time formula:

EAT = Phit ∗ Thit + Pmiss ∗ Tmiss

We want the EAT of the L1-cache. The TL1miss is just the EAT of the next level in the memory
hierarchy, the RAM:

EATL1 = PL1hit ∗ 1ns + PL1miss ∗ EATRAM

EATRAM = PRAMhit ∗ 10ns + PRAMmiss ∗ 10ms

What is PL1hit? The worst we can do is 1 miss every 8 references, because 8 references in a row go
to the same cache block. There is some very small chance that, because of the random replacement
policy, a given block is in the L1 even though it hasn’t been referenced for a long time (i.e. the
other 511 cache-block references the application makes while walking the loop). It is safe to say
this probability is too small to be of concern. Thus, PL1hit = 7/8.

What is PRAMhit? The cache makes 32 byte requests to memory. This means it will make 128
requests in a row for each block. Since LRU will never have the next needed block in memory, the
first of these 128 references will miss and require a disk access. PRAMhit = 127/128.

Plugging these numbers in, EATL1 = 9.7677µs. Note that despite the terrifically small probability
of a RAM miss (1/1024), going to disk is so expensive that the EAT is more than 4500 times the
EAT of a system with 4 physical pages.

If the pager is replaced with a most-recently used pager, what is the EAT?

One in four of the page faults can be made into hits by using MRU. (you should run through a few
loops to see this)1.

Thus, out of the 512 total memory references, only 3 will be page faults (rather than 4 before);
PRAMhit = 509/512.

EATL1 = 7.3263µs.

1This means that MRU is a better approximation to OPT than LRU for this reference pattern.


