
CSE 451: Operating Systems

Lecture 10
Paging & TLBs



5/6/2002 © 2001 Brian Bershad 2

Managing Page Tables

• Last lecture:
– size of a page table for 32 bit AS with 4KB pages was 4MB!

• far too much overhead

– how can we reduce this?
• observation: only need to map the portion of the address space 

that is actually being used (tiny fraction of address space)
– only need page table entries for those portions

• how can we do this?
– make the page table structure dynamically extensible…

– all problems in CS can be solved with a level of indirection
• two-level page tables



5/6/2002 © 2001 Brian Bershad 3

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset + PFN = physical address

• Example:
– 4KB pages, 4 bytes/PTE

• how many bits in offset? need 12 bits for 4KB

– want master PT in one page:  4KB/4 bytes = 1024 PTE
• hence, 1024 secondary page tables

– so: master page number = 10 bits, offset = 12 bits
• with a 32 bit address, that leaves 10 bits for secondary PN
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Addressing Page Tables

• Where are page tables stored?
– and in which address space?

• Possibility #1: physical memory
– easy to address, no translation required
– but, page tables consume memory for lifetime of VAS

• Possibility #2: virtual memory (OS’s VAS)
– cold (unused) page table pages can be paged out to disk
– but, addresses page tables requires translation

• how do we break the recursion?

– don’t page the outer page table (called wiring)

• So, now that we’ve paged the page tables, might as 
well page the entire OS address space!
– tricky, need to wire some special code and data (e.g., 

interrupt and exception handlers)
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Making it all efficient

• Original page table schemed doubled the cost of 
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient 

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware

• called a translation lookaside buffer (TLB)

• TLB is managed by the memory management unit (MMU)
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TLBs

• Translation lookaside buffers
– translates virtual page #s into PTEs (not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical  (64-192KB)
• can hold the “hot set” or “working set” of process

– hit rates in the TLB are therefore really important
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Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, who places translations into the TLB?

• Hardware (memory management unit, MMU)
– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation

• OS gets to pick the page table format
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Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to 

invalidate the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB!  (flush TLB)

• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a 
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g. LRU)
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Selecting a page size

• Small pages give you lots of flexibility but at a high 
cost.

• Big pages are easy to manage, but not very flexible.
• Issues include

– TLB coverage
• product of page size and # entries

– internal fragmentation
• likely to use less of a big page

– # page faults and prefetch effect
• small pages will force you to fault often

– match to I/O bandwidth
• want one miss to bring in a lot of data since it will take a long 

time.
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Segmentation

• A similar technique to paging is segmentation
– segmentation partitions memory into logical units

• stack, code, heap, …

– on a segmented machine, a VA is <segment #, offset>
– segments are units of memory, from the user’s perspective

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

• Hardware support:
– multiple base/limit pairs, one per segment

• stored in a segment table

– segments named by segment #, used as index into table



5/6/2002 © 2001 Brian Bershad 12

Segment lookups
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An Early Example -- IBM System 370
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The Segment Table

• Can have one segment table per process
• To share memory, just share by putting the same translation into

the base and bounds pair.
• Can share with different protections.
• Cross-segment names can be tough to deal with

– Segments need to have the same names in multiple processes if 
you want to share pointers.

• If the segment table is big, should keep it in main memory
– but then access is slow.

• So, keep a subset of the referenceable segments in a small on-
chip memory and look up translation there.

– can be either automatic or manual.

• Share common segments
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Combining Segmentation and Paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logically related units
– stack, file, module, heap, …?
– segment vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed chunks
– makes segments easier to manage within PM

• no external fragmentation
• segments are “pageable”- don’t need entire segment in memory at same time

• Linux:
– 1 kernel code segment, 1 kernel data segment

– 1 user code segment, 1 user data segment

– N task state segments (stores registers on context switch)

– 1 “local descriptor table” segment (not really used)
– all of these segments are paged

• three-level page tables
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MIPS R3000 VM Architecture

• User mode and kernel mode
– 2GB of user space
– When in user mode, can only 

access KUSEG.

• Three kernel regions; all are 
globally shared.

– KSEG0 contains kernel code 
and data, but is unmapped. 
Translations are direct.

– KSEG1 like KSEG0, but
uncached. Used for I/O 
space.

– KSEG2 is kernel space, but 
cached and mapped. 
Contains page tables for 
KUSEG.

• Implication is that the 
page tables are kept in 
VIRTUAL memory!
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Lookups

• Each memory reference can be 3
– assuming no fault

• Can exploit locality to improve lookup strategy
– a process is likely to use only a few pages at a time

• Use Translation Lookaside buffer to exploit locality
– a TLB is a fast associative memory that keeps track of recent 

translations.

• The hardware searches the TLB on a memory reference
• On a TLB miss, either a hardware or software exception can 

occur
– older machines reloaded the TLB in hardware
– newer RISC machines tend to use software loaded TLBs

• can have any structure you want for the page table
• fast handler computes and goes. Eg, the MIPS.
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The TLB

• A small fully associative cache
• Each entry contains a tag and a 

value.
– tags are virtual page numbers
– values are physical page table 

entries.

• Problems include
– keeping the TLB consistent with 

the PTE in main memory
• valid and ref bits, for example

– keeping TLBs consistent on an 
MP.

– quickly loading the TLB on a 
miss.

• Hit rates are important.

Tag Value

0xfff1000

0xfff1000

0xa10100

0xbbbb00

0x1111aa11

?

0x12341111
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Software Loaded TLB

• The MIPS TLB contains 64 
entries

– fully associative
– random replacement

• On a TLB miss to KUSEG, a 
trap occurs

– control transfers to UTLBMISS 
handler

• If a miss occurs in the miss 
handler, a second fault occurs.

– control transfers to a 
KTLBMISS handler

– the missed VA is “pte”
– the translation for the page 

table is loaded into the TLB.

UTLBmi ss( vm_of f set _t va)
{

PTE_t pt e;
pt e = PCB. PTBR;
pt e = pt e +  ( va /  PAGE_SI ZE) ;
TLB_dr opi n( va,

* pt e) ;   / *  coul d mi ss her e * /
}
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Cool Paging Tricks

• Exploit level of indirection between VA and PA
– shared memory

• regions of two separate processes’ address spaces map to the 
same physical frames

– read/write: access to share data

– execute: shared libraries!

• will have separate PTEs per process, so can give different 
processes different access privileges

• must the shared region map to the same VA in each process?

– copy-on-write (COW), e.g. on fork( )
• instead of copying all pages, created shared mappings of 

parent pages in child address space
– make shared mappings read-only in child space

– when child does a write, a protection fault occurs, OS takes over 
and can then copy the page and resume client
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Another great trick

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file

• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty


