
CSE 451: Operating Systems

Lecture 10
Paging & TLBs

5/6/2002 © 2001 Brian Bershad 2

Managing Page Tables

• Last lecture:
– size of a page table for 32 bit AS with 4KB pages was 4MB!

• far too much overhead

– how can we reduce this?
• observation: only need to map the portion of the address space

that is actually being used (tiny fraction of address space)
– only need page table entries for those portions

• how can we do this?
– make the page table structure dynamically extensible…

– all problems in CS can be solved with a level of indirection
• two-level page tables

5/6/2002 © 2001 Brian Bershad 3

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset + PFN = physical address

• Example:
– 4KB pages, 4 bytes/PTE

• how many bits in offset? need 12 bits for 4KB

– want master PT in one page: 4KB/4 bytes = 1024 PTE
• hence, 1024 secondary page tables

– so: master page number = 10 bits, offset = 12 bits
• with a 32 bit address, that leaves 10 bits for secondary PN

5/6/2002 © 2001 Brian Bershad 4

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

5/6/2002 © 2001 Brian Bershad 5

Addressing Page Tables

• Where are page tables stored?
– and in which address space?

• Possibility #1: physical memory
– easy to address, no translation required
– but, page tables consume memory for lifetime of VAS

• Possibility #2: virtual memory (OS’s VAS)
– cold (unused) page table pages can be paged out to disk
– but, addresses page tables requires translation

• how do we break the recursion?

– don’t page the outer page table (called wiring)

• So, now that we’ve paged the page tables, might as
well page the entire OS address space!
– tricky, need to wire some special code and data (e.g.,

interrupt and exception handlers)

5/6/2002 © 2001 Brian Bershad 6

Making it all efficient

• Original page table schemed doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware

• called a translation lookaside buffer (TLB)

• TLB is managed by the memory management unit (MMU)

5/6/2002 © 2001 Brian Bershad 7

TLBs

• Translation lookaside buffers
– translates virtual page #s into PTEs (not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical (64-192KB)
• can hold the “hot set” or “working set” of process

– hit rates in the TLB are therefore really important

5/6/2002 © 2001 Brian Bershad 8

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, who places translations into the TLB?

• Hardware (memory management unit, MMU)
– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation

• OS gets to pick the page table format

5/6/2002 © 2001 Brian Bershad 9

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g. LRU)

© 2001 Brian Bershad

Selecting a page size

• Small pages give you lots of flexibility but at a high
cost.

• Big pages are easy to manage, but not very flexible.
• Issues include

– TLB coverage
• product of page size and # entries

– internal fragmentation
• likely to use less of a big page

– # page faults and prefetch effect
• small pages will force you to fault often

– match to I/O bandwidth
• want one miss to bring in a lot of data since it will take a long

time.

5/6/2002 © 2001 Brian Bershad 11

Segmentation

• A similar technique to paging is segmentation
– segmentation partitions memory into logical units

• stack, code, heap, …

– on a segmented machine, a VA is <segment #, offset>
– segments are units of memory, from the user’s perspective

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

• Hardware support:
– multiple base/limit pairs, one per segment

• stored in a segment table

– segments named by segment #, used as index into table

5/6/2002 © 2001 Brian Bershad 12

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
protection fault

no

yes

offset

baselimit

segment table

© 2001 Brian Bershad

An Early Example -- IBM System 370

24 bit virtual address

4 bits 8 bits 12 bits

Segment
Table

Page Table

+

simple bit operation

Real Memory

© 2001 Brian Bershad

The Segment Table

• Can have one segment table per process
• To share memory, just share by putting the same translation into

the base and bounds pair.
• Can share with different protections.
• Cross-segment names can be tough to deal with

– Segments need to have the same names in multiple processes if
you want to share pointers.

• If the segment table is big, should keep it in main memory
– but then access is slow.

• So, keep a subset of the referenceable segments in a small on-
chip memory and look up translation there.

– can be either automatic or manual.

• Share common segments

5/6/2002 © 2001 Brian Bershad 15

Combining Segmentation and Paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logically related units
– stack, file, module, heap, …?
– segment vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed chunks
– makes segments easier to manage within PM

• no external fragmentation
• segments are “pageable”- don’t need entire segment in memory at same time

• Linux:
– 1 kernel code segment, 1 kernel data segment

– 1 user code segment, 1 user data segment

– N task state segments (stores registers on context switch)

– 1 “local descriptor table” segment (not really used)
– all of these segments are paged

• three-level page tables

© 2001 Brian Bershad

MIPS R3000 VM Architecture

• User mode and kernel mode
– 2GB of user space
– When in user mode, can only

access KUSEG.

• Three kernel regions; all are
globally shared.

– KSEG0 contains kernel code
and data, but is unmapped.
Translations are direct.

– KSEG1 like KSEG0, but
uncached. Used for I/O
space.

– KSEG2 is kernel space, but
cached and mapped.
Contains page tables for
KUSEG.

• Implication is that the
page tables are kept in
VIRTUAL memory!

Physical memory

ffffffff

00000000

1ffffffff 512
MB

3684
MB

00000000

User
Mapped

Cacheable

7ffffffff

KUSEG

Kernel
Unmapped

Cached

9ffffffff KSEG0

Kernel
Unmapped
UnCached

bffffffff
KSEG1

Kernel
mapped

UnCached

fffffffff
KSEG2

Virtual memory

© 2001 Brian Bershad

Lookups

• Each memory reference can be 3
– assuming no fault

• Can exploit locality to improve lookup strategy
– a process is likely to use only a few pages at a time

• Use Translation Lookaside buffer to exploit locality
– a TLB is a fast associative memory that keeps track of recent

translations.

• The hardware searches the TLB on a memory reference
• On a TLB miss, either a hardware or software exception can

occur
– older machines reloaded the TLB in hardware
– newer RISC machines tend to use software loaded TLBs

• can have any structure you want for the page table
• fast handler computes and goes. Eg, the MIPS.

© 2001 Brian Bershad

The TLB

• A small fully associative cache
• Each entry contains a tag and a

value.
– tags are virtual page numbers
– values are physical page table

entries.

• Problems include
– keeping the TLB consistent with

the PTE in main memory
• valid and ref bits, for example

– keeping TLBs consistent on an
MP.

– quickly loading the TLB on a
miss.

• Hit rates are important.

Tag Value

0xfff1000

0xfff1000

0xa10100

0xbbbb00

0x1111aa11

?

0x12341111

© 2001 Brian Bershad

Software Loaded TLB

• The MIPS TLB contains 64
entries

– fully associative
– random replacement

• On a TLB miss to KUSEG, a
trap occurs

– control transfers to UTLBMISS
handler

• If a miss occurs in the miss
handler, a second fault occurs.

– control transfers to a
KTLBMISS handler

– the missed VA is “pte”
– the translation for the page

table is loaded into the TLB.

UTLBmi ss(vm_of f set _t va)
{

PTE_t pt e;
pt e = PCB. PTBR;
pt e = pt e + (va / PAGE_SI ZE) ;
TLB_dr opi n(va,

* pt e) ; / * coul d mi ss her e * /
}

5/6/2002 © 2001 Brian Bershad 20

Cool Paging Tricks

• Exploit level of indirection between VA and PA
– shared memory

• regions of two separate processes’ address spaces map to the
same physical frames

– read/write: access to share data

– execute: shared libraries!

• will have separate PTEs per process, so can give different
processes different access privileges

• must the shared region map to the same VA in each process?

– copy-on-write (COW), e.g. on fork()
• instead of copying all pages, created shared mappings of

parent pages in child address space
– make shared mappings read-only in child space

– when child does a write, a protection fault occurs, OS takes over
and can then copy the page and resume client

5/6/2002 © 2001 Brian Bershad 21

Another great trick

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file

• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

